Supporting Information

Enhanced charge transport from Pd-doping in CsPbBr₃ quantum dots for efficient photoelectrocatalytic water splitting

Wenxiao Gong, ^a Yulan Li, *^a Yang Yang, ^a Heng Guo, *^b Xiaobin Niu*^a

^{*a*} School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

^b School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610050, China.

*E-mail address: <u>heng.guo@swpu.edu.cn; liyl03@uestc.edu.cn; xbniu@uestc.edu.cn;</u>

Figure S2. The cross-sectional SEM and EDS images of Pd-CsPbBr₃ QDs based device.

Figure S3. (a) The survey XPS spectrum of Pd-CsPbBr₃ QDs. The XPS (b) Pb 4f and Pd 3d spectrum of 3% Pd-CsPbBr₃ QDs.

Figure S4. (a) The schematic of Pd-CsPbBr₃ QDs based device layer by layer. The cross-

sectional EDS of the (b) CsPbBr₃ and (c) Pd-CsPbBr₃ QDs.

Figure S5. LSV of the Pd-CsPbBr₃ QDs based photoanode with different concentrations of

Pd doping. The chopped plot of the CsPbBr₃ QDs based device.

Element	Weight percentage	Wt % Sigma	
0	38.55	0.43	
Ti	36.95	0.35	
Pb	4.59	0.32	
Br	12.89	0.20	
Pd	2.60	0.22	
Cs	4.42	0.35	

Table S1. The cross-sectional element EDS mapping of Pd-CsPbBr₃ QDs based device.

Table S2. The Pd/Pb ratio versus dopant concentration of Pd-CsPbBr₃ QDs determined by ICP-OES.

Sample	Cx (ug/kg)	W (%)
Pd	19568723.0	0.2%
Cs	190178909.6	19.02%
Pb	285336133.0	28.53%
Br	84114215.4	8.41%

Table S3. High-resolution XPS peak positions of Cs, Br and Pb elements in CsPbBr₃ and Pd-CsPbBr₃ QDs.

	Cs (eV)		Br (eV)		Pb (eV)	
Sample	Cs	Cs	Br	Br	Pb	Pb
	3d _{5/3}	3d _{3/2}	3d _{5/3}	3d _{3/2}	$4f_{7/2}$	$4f_{5/2}$
CsPbBr ₃	722.0	735.9	66.2	67.3	136.4	141.3
Pd-CsPbBr ₃	722.0	735.9	66.2	67.3	136.6	141.5

Table S4. The corresponding band energy parameters of Pd-CsPbBr₃ and Pd-CsPbBr₃ QDs.

Sample	$E_{GB} (eV)$	$E_F(eV)$	E _{VB} (eV)	E _{CB} (eV)
CsPbBr ₃	2.35	-3.95	-5.95	-3.6
Pd-CsPbBr ₃	2.30	-4.02	-5.79	-3.49

Table S5. Fitted parameters of TRPL decay curves in perovskite films with using Pd-CsPbBr₃ and Pd-CsPbBr₃ QDs.

_						
	ETLs	A_1	τ_1	A_2	τ_2	τ
			[ns]		[ns]	[ns]
	CsPbBr ₃	486.90	5.26	1304.30	0.91	3.87
_	Pd-CsPbBr ₃	899.99	2.28	396.35	13.38	10.28

The TRPL decay was fitted by a bi-exponential decay function with below equation:

$$PL_{\text{intensity}} = A_1 e^{\frac{-t}{\tau_1}} + A_2 e^{\frac{-t}{\tau_2}}$$

where A_1 and A_2 are time-independent coefficients of amplitude fraction for each decay component, τ_1 and τ_2 are decay time of a fast and slow component, respectively.