Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

[Sr₄Cl₂][Si₃S₉]: Ultrawide-bandgap salt-inclusion thiosilicate nonlinear optical material with unprecedented tri-polymerized [Si₃S₉] clusters

Chenyao Zhao,^b Kui Wu,^{*,a} Yan Xiao,^b Bingbing Zhang,^b Haohai Yu,^{*,a} Huaijin

Zhang^a

^aState Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, China

^bCollege of Chemistry and Environmental Science, Hebei University, Baoding, China To whom correspondence should be addressed : E-mail: wukui@sdu.edu.cn; haohaiyu@sdu.edu.cn;

CONTENTS

- 1. Synthesis of Title Compound
- 2. Structural Refinement and Crystal Data
- 3. Property Characterization
- 4. Figures and Tables
- 5. References

1. Synthesis of Title Compound

All the reagents were directly purchased from the Beijing Hawke Technology Co., Ltd. The whole preparation process is completed in an Ar-filled glovebox.

The synthesis of $[Sr_4Cl_2][Si_3S_9]$ was carried out with the stoichiometric ratio $(SrS:SrCl_2:Si:S=3:1:3:6)$. We firstly put the raw material into a graphite crucible and then put the crucible into a flame-sealed silica tube with 10^{-3} Pa to eliminate the corrosion problem between the quartz tube and the raw material. The silica tube was heated to 850 °C and kept at this temperature for about 50 hours and slowly reduced to ambient temperature over a period of 3 days. Finally, the high yield (>95%) of $[Sr_4Cl_2][Si_3S_9]$ crystals were obtained and they were stable in air within half of year.

The SEM-EDS test of the crystal was performed with a Hitachi TM4000Plus scanning electron microscope, which shows that four chemical elements (Sr, Si, S and Cl) were contained in a ratio of approximately 4.198 : 3.584 : 9.952 : 2.266 (Figure S3).

2. Structural Refinement and Crystal Data

Selected high-quality crystal of $[Sr_4Cl_2][Si_3S_9]$ was used for data collection by a Bruker D8 VENTURE diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å) at 296 K. Its crystal structure was solved by direct method and refined using the SHELXTL program package.^[1] Absorption correction was performed using the multi-scan method. ^[2] Reasonable anisotropic thermal parameters were obtained for all atoms by anisotropic refinement and extinction correction. PLATON was also used to check the final structures and no other symmetries were found.^[3] Refinement parameters and data were detailed in Table S1.

3. Property Characterization

3.1 Powder X-ray Diffraction

Powder X-ray diffraction (XRD) patterns of title compounds were collected on a Bruker D2 X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at room temperature. The 2θ range was 10-70° with a step size of 0.02° and a fixed counting time of 1s/step.

3.2 UV-Vis-Near-IR (NIR) Diffuse-Reflectance Spectra

Diffuse-reflectance spectra were measured by a Shimadzu SolidSpec-3700DUV spectrophotometer in the wavelength range of 200–1100 nm at room temperature. The absorption spectra were converted from the reflection spectra *via* the Kubelka–Munk function.

3.3 IR and Raman Spectra

The Infrared spectrum was carried out on a Shimadzu IR Affinity Fourier transform infrared spectrometer in the range of 400-4000 cm⁻¹ with a resolution of 4 cm⁻¹. The crystals were mixed with KBr in a ratio of approximately 1:100 as the sample for measurement. The sample was dried and ground into a fine powder and then pressed into a transparent sheet. Finally, the sheet was loaded into the sample chamber and the IR spectral data were recorded.

Hand-picked crystals were first placed on object slides and then Raman spectra were recorded by a 532 nm laser using a LABRAM HR Evolution spectrometer equipped with a CCD detector. The integration time was set to 5 seconds.

3.4 Second-harmonic Generation Measurements

The powder SHG response was studied by the Kurtz and Perry method ^[4] with Q-switch laser (2.09 μ m, 3 Hz, 50 ns) of different particle sizes, including 38–55, 55–88, 88–105, 105–150, 150–200, and 200–250 μ m. The AgGaS₂ crystal was ground and sieved into the same size range as the reference.

3.5 LDT Measurements

The LDTs of title compounds were evaluated on powder sample ($150-200 \mu m$) with a pulsed YAG laser ($1.06 \mu m$, 10 ns, 10 Hz). Similar size of AgGaS₂ is chosen as the reference. The judgment criterion is as follows: with increasing laser energy, the color

change of the powder sample is constantly observed by optical microscope to determine the damage threshold. To adjust different laser beams, an optical concave lens is added into the laser path. The damage spot is measured by the scale of optical microscope.

3.6 Thermal Properties

The thermogravimetric analysis (TG) was performed using a NETZSCH STA449F3 thermal analyzer and the title compound was heated from 50°C to 950°C at a rate of 8°C/min under air conditions.

3.7 Computational Description

In order to further investigate the relationship of structure–property, the electronic structure of title compound was studied by density functional theory (DFT) based on ab initio calculations.^[5] The exchange-correlation potential was calculated using Perdew–Burke–Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) with the scheme.^[6] To achieve energy convergence, a plane-wave basis set energy cutoff was 720 eV within normal-conserving pseudo-potential (NCP)^[7]. As important parameters for NLO crystal, SHG coefficients were also calculated.^[8] Owing to the discontinuity of exchange correlation energy, the experimental value is usually larger than that of calculated band gap. Thus, scissors operators are used to make the conduction bands agree with the experimental values.

4. Tables and Figures

Table S1. Crystal data and structure refinement for title compound.

Table S2. Link modes of SiS₄ units in 197 known thiosilicates.

Table S3. The optical band gap and SHG response of the reported IR NLO

chalcohalides ($E_g > 3.0 \text{ eV}$).

Table S4. LDTs of title compound and AgGaS₂ (as the reference).

Table S5. Dipole moment calculation for [Sr₄Cl₂][Si₃S₉].

Table S6. Property comparison of the $[Ae_4X_2][M^{IV}_3Q_9]$ system.

Table S7. Property comparison of the reported chalcohalides.

Table S8. Property comparison of the reported thiosilicates.

Figure S1. The whole structures and link modes of SiS_4 units in (a) $Na_2Si_2S_5$; (b)

 $Cu_4NiSi_2S_7$; (c) $Li_2MgSi_2S_6$; (d) $Cs_4Si_2S_6$ and (e) $Cs_2ZnSi_3S_8$.

Figure S2. Powder XRD patterns of title compound.

Figure S3. The SEM-EDS diagram of [Sr₄Cl₂][Si₃S₉].

Figure S4. The TG and DSC curves of [Sr₄Cl₂][Si₃S₉].

Figure S5. Band structures of (a) [Sr₄Cl₂][Si₃S₉] and (b) Sr₂SiS₄.

Figure S6. IR spectrum of [Sr₄Cl₂][Si₃S₉].

Empirical formula	$[Sr_4Cl_2][Si_3S_9]$
formula weight	794.19
crystal system	Hexagonal
space group	<i>P</i> 6 ₃
cell parameter a (Å)	9.4397(8)
cell parameter <i>c</i> (Å)	11.5555(11)
Z, $V(Å^3)$ (Volume)	2, 891.73(17)
$D_c (g/cm^3)$ (calculated density)	2.958
μ (mm ⁻¹) (absorption coefficient)	13.429
goodness-of-fit on F ²	0.997
$R_1, wR_2 (I > 2\sigma(I))^a$	0.0356, 0.0454
R_1 , wR_2 (all data)	0.0272, 0.0437
absolute structure parameter	0.018(8)
largest diff. peak and hole $(e \cdot Å^{-3})$	0.516, -0.438

 Table S1. Crystal data and structure refinement for title compound.

^[a] $R_1 = F_o - F_c / F_o$ and $wR_2 = [w (F_o^2 - F_c^2)^2 / wF_o^4]^{1/2}$ for $F_o^2 > 2\sigma (F_o^2)$

Compounds	Space group	Link modes
$Na_2Si_2S_5$	Cmcm	Si ₄ S ₁₀
$Cs_2ZnSi_3S_8$	<i>P</i> -1	1D chain
$Rb_2ZnSi_3S_8$	<i>P</i> -1	1D chain
Cu_2SiS_3	Сс	1D chain
$Cs_4Si_2S_6$	<i>C</i> 2/ <i>m</i>	Si ₂ S ₆ (edge-sharing)
$Rb_4Si_2S_6$	<i>C</i> 2/ <i>m</i>	Si ₂ S ₆ (edge-sharing)
Ag_2SiS_3	$P2_{1}/c$	Si ₂ S ₆ (edge-sharing)
$Li_2Mg_2Si_2S_6$	P31m	Si ₂ S ₆ (Si-Si)
$Cu_4NiSi_2S_7$	<i>C</i> 2	Si_2S_7
Sr_2SiS_4	$P2_{1}/m$	SiS ₄
$SrCu_2SiS_4$	<i>P</i> 3 ₁ 21	SiS ₄
$SrNa_2SiS_4$	R3c	SiS_4
SrLi ₂ SiS ₄	<i>I</i> 4-2 <i>m</i>	SiS_4
SrAg ₂ SiS ₄	<i>I</i> 4-2 <i>m</i>	SiS_4
$EuCu_2SiS_4$	<i>P</i> 3 ₁ 21	SiS ₄
Cu_2PbSiS_4	<i>P</i> 3 ₂ 21	SiS_4
Cu ₂ FeSiS ₄	$Pmn2_1$	SiS_4
α -Cu ₂ ZnSiS ₄	$Pmn2_1$	SiS_4
β -Cu ₂ ZnSiS ₄	Pn	SiS ₄
Cu_2MgSiS_4	$Pmn2_1$	SiS ₄
Cu_2CdSiS_4	$Pmn2_1$	SiS_4
Cu_2HgSiS_4	$Pmn2_1$	SiS_4
Cu_2MnSiS_4	$Pmn2_1$	SiS_4
Cu_2CoSiS_4	<i>I</i> 4-2 <i>m</i>	SiS_4
Li ₂ CdSiS ₄	$Pmn2_1$	SiS_4
Li ₂ HgSiS ₄	$Pmn2_1$	SiS_4
Li_2ZnSiS_4	$Pna2_1$	SiS_4
Ag_2ZnSiS_4	Pn	SiS_4
Ag_2FeSiS_4	Pc	SiS ₄
$Na_2Hg_3Si_2S_8$	<i>P</i> 4- <i>c</i> 2	SiS ₄
Pb_2SiS_4	$P2_{1}/c$	SiS ₄

Table S2. Link modes of SiS_4 units in 197 known thiosilicates.

Ce ₃ (SiS ₄) ₂ Br	C2/c	SiS ₄
Ce ₃ (SiS ₄) ₂ I	C2/c	SiS_4
Ce ₃ (SiS ₄) ₂ Cl	C2/c	SiS_4
$La_3(SiS_4)_2I$	C2/c	SiS ₄
(La ₂ Ce)(SiS ₄) ₂ I	C2/c	SiS ₄
$(La_{2.2}Ce_{0.8})(SiS_4)_2I$	C2/c	SiS ₄
$(La_{2.5}Ce_{0.5})(SiS_4)_2I$	C2/c	SiS_4
$(La_{2.8}Ce_{0.2})(SiS_4)_2I$	C2/c	SiS_4
$(La_{2.9}Ce_{0.1})(SiS_4)_2I$	C2/c	SiS ₄
$(La_{2.97}Ce_{0.03})(SiS_4)_2I$	C2/c	SiS_4
$(La_{2.99}Ce_{0.01})(SiS_4)_2I$	C2/c	SiS_4
$Pr_3(SiS_4)_2I$	C2/c	SiS_4
Nd ₃ (SiS ₄) ₂ I	C2/c	SiS ₄
$Sm_3(SiS_4)_2I$	C2/c	SiS_4
$Tb_3(SiS_4)_2I$	C2/c	SiS_4
Gd ₃ (SiS ₄) ₂ Br	C2/c	SiS_4
$La_3(SiS_4)_2Br$	C2/c	SiS_4
Nd ₃ (SiS ₄) ₂ Br	C2/c	SiS ₄
Pr ₃ (SiS ₄) ₂ Br	C2/c	SiS_4
Sm ₃ (SiS ₄) ₂ Br	C2/c	SiS_4
La ₃ (SiS ₄) ₂ Cl	C2/c	SiS_4
$Ce_3(SiS_4)_2Cl$	C2/c	SiS ₄
Pr ₃ (SiS ₄) ₂ Cl	C2/c	SiS_4
$Ba_2(SiS_4)$	Pnma	SiS_4
KCeSiS ₄	$P2_1$	SiS_4
KYSiS ₄	$P2_1$	SiS_4
KLaSiS ₄	$P2_1$	SiS ₄
KEuSiS ₄	$P2_1$	SiS_4
KYbSiS ₄	$P2_1$	SiS_4
KPrSiS ₄	$P2_1$	SiS_4
KNdSiS ₄	$P2_1$	SiS_4
CsPrSiS ₄	$P2_1$	SiS_4
CsNdSiS ₄	$P2_1$	SiS_4

Na ₄ SiS ₄	$P2_{1}2_{1}2_{1}$	SiS_4
RbTbSiS ₄	$P2_1$	SiS ₄
RbHoSiS ₄	$P2_1$	SiS ₄
RbDySiS ₄	$P2_1$	SiS ₄
RbPrSiS ₄	$P2_1$	SiS ₄
RbGdSiS ₄	$P2_1$	SiS_4
RbNdSiS ₄	$P2_1$	SiS_4
CsDySiS ₄	$P2_1$	SiS_4
CsErSiS ₄	$P2_1$	SiS_4
CsEuSiS ₄	$P2_1$	SiS_4
CsGdSiS ₄	$P2_1$	SiS_4
CsHoSiS ₄	$P2_1$	SiS_4
CsSmSiS ₄	$P2_1$	SiS ₄
CsTbSiS ₄	$P2_1$	SiS ₄
CsTmSiS ₄	$P2_1$	SiS ₄
RbEuSiS ₄	$P2_1$	SiS ₄
RbCeSiS ₄	Pnma	SiS_4
CsLaSiS ₄	Pnma	SiS ₄
RbLaSiS ₄	Pnma	SiS_4
CsCeSiS ₄	Pnma	SiS_4
KLaSiS ₄	$P2_{1}/m$	SiS_4
$Ce_4(SiS_4)_3$	R3c	SiS_4
$BaLa_2Si_2S_8$	<i>R</i> -3 <i>c</i>	SiS_4
$Ba(La_{0.94}Ce_{0.06})_2Si_2S_8$	<i>R</i> -3 <i>c</i>	SiS_4
CeDyPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
CeErPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
CeSmPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS ₄
CeTbPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
CePrPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
CeHoPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS ₄
LaCePbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
LaErPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
LaDyPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4

PrErPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
LaTbPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS ₄
PrDyPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
PrSmPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS ₄
PrYPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
PrTbPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
PrHoPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
LaYPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
$La_{2.1}Pb_{0.9}(SiS_4)_2$	<i>R</i> -3 <i>c</i>	SiS_4
Li ₂ PbSiS ₄	<i>I</i> -42 <i>m</i>	SiS_4
$Ce_2Pb(SiS_4)_2$	<i>R</i> -3 <i>c</i>	SiS_4
$Pr_2Pb(SiS4)_2$	<i>R</i> -3 <i>c</i>	SiS_4
$Nd_2Pb(SiS_4)_2$	<i>R</i> -3 <i>c</i>	SiS_4
Tl ₂ PbSiS ₄	$P2_{1}/c$	SiS_4
RbSiBiS ₄	$P2_{1}/c$	SiS_4
CsSiBiS ₄	$P2_{1}/c$	SiS_4
KBiSiS ₄	$P2_{1}/c$	SiS_4
$SiSn_2S_4$	$P2_{1}/c$	SiS_4
$Pr_6Si_4S_{17}$	<i>P</i> -1	SiS_4
$Nd_6Si_4S_{17}$	<i>P</i> -1	SiS_4
$Sm_6Si_4S_{17}$	<i>P</i> -1	SiS_4
$Ce_6Si_4S_{17}$	<i>P</i> -1	SiS_4
Ce ₂ SiS ₅	$P2_1/c$	SiS_4
Ba_3SiS_5	Pnma	SiS_4
Cu ₈ SiS ₆	$Pmn2_1$	SiS_4
$Sm_3ClS_2(SiS_4)$	Pnma	SiS_4
Nd ₃ ClS ₂ (SiS ₄)	Pnma	SiS_4
$Ag_8(SiS_4)S_2$	$Pna2_1$	SiS_4
Hg ₄ SiS ₆	Сс	SiS_4
Cd_4SiS_6	Сс	SiS_4
CeYPbSi ₂ S ₈	<i>R</i> -3 <i>c</i>	SiS_4
$La_3Sb_{0.33}SiS_7$	<i>P</i> 6 ₃	SiS_4
$Pr_3Sb_{0.33}SiS_7$	$P6_{3}$	SiS ₄

$La_{3}Al_{0.44}Si_{0.93}S_{7}$	<i>P</i> 6 ₃	SiS4
$Gd_3Cd_{0.50}SiS_7$	<i>P</i> 6 ₃	SiS4
$Y_3Pd_{0.50}SiS_7$	<i>P</i> 6 ₃	SiS4
Al _{0.33} Sm ₃ SiS ₇	<i>P</i> 6 ₃	SiS_4
$In_{0.33}Sm_3SiS_7$	<i>P</i> 6 ₃	SiS_4
Gd ₃ Cd _{0.5} SiS ₇	<i>P</i> 6 ₃	SiS_4
$Sm_3Ag_{0.77}SiS_7$	<i>P</i> 6 ₃	SiS_4
La ₃ CuSiS ₇	<i>P</i> 6 ₃	SiS_4
Y ₃ CuSiS ₇	<i>P</i> 6 ₃	SiS_4
Ce ₃ CuSiS ₇	<i>P</i> 6 ₃	SiS_4
Nd ₃ CuSiS ₇	<i>P</i> 6 ₃	SiS_4
Pr ₃ CuSiS ₇	$P6_3$	SiS_4
Sm ₃ CuSiS ₇	<i>P</i> 6 ₃	SiS_4
Tb ₃ CuSiS ₇	<i>P</i> 6 ₃	SiS_4
Dy ₃ CuSiS ₇	$P6_3$	SiS_4
Er ₃ CuSiS ₇	$P6_3$	SiS_4
Ho ₃ CuSiS ₇	$P6_3$	SiS_4
Gd ₃ CuSiS ₇	<i>P</i> 6 ₃	SiS_4
La ₃ AgSiS ₇	<i>P</i> 6 ₃	SiS_4
Ce ₃ AgSiS ₇	$P6_3$	SiS_4
Nd_3AgSiS_7	$P6_3$	SiS_4
Pr ₃ AgSiS ₇	<i>P</i> 6 ₃	SiS ₄
Sm ₃ AgSiS ₇	<i>P</i> 6 ₃	SiS_4
$La_3Ag_{0.9}SiS_7$	<i>P</i> 6 ₃	SiS_4
$Ce_3Ag_{0.82}SiS_7$	<i>P</i> 6 ₃	SiS_4
$Pr_3Ag_{0.85}SiS_7$	<i>P</i> 6 ₃	SiS_4
$Nd_3Ag_{0.81}SiS_7$	<i>P</i> 6 ₃	SiS ₄
$La_3Cr_{0.5}SiS_7$	<i>P</i> 6 ₃	SiS_4
$Y_3Cr_{0.5}SiS_7$	<i>P</i> 6 ₃	SiS4
$La_3Cd_{0.5}SiS_7$	<i>P</i> 6 ₃	SiS_4
$LaSmPbSi_2S_8$	<i>R</i> -3 <i>c</i>	SiS_4
$LaHoPbSi_2S_8$	<i>R</i> -3 <i>c</i>	SiS_4
(Ag _{0.56} Li _{1.44})In ₂ (SiS ₆)	Сс	SiS_4

$(Ag_{0.88}Li_{1.12})In_2(SiS_6)$	Cc	SiS_4
$Li_2In_2SiS_6$	Cc	SiS_4
Na ₂ In ₂ SiS ₆	Cc	SiS_4
$Cu_2In_2SiS_6$	Cc	SiS_4
$Ag_2In_2SiS_6$	Cc	SiS_4
$ZnY_6Si_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$Y_6MgSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$FeSm_6Si_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$La_6ZnSi2S_{14}$	<i>P</i> 6 ₃	SiS ₄
$La_6MnSi_2S_{14}$	<i>P</i> 6 ₃	SiS ₄
Ce ₆ MnSi ₂ S ₁₄	<i>P</i> 6 ₃	SiS_4
$La_{6}In_{0.67}Si_{2}S_{14}$	<i>P</i> 6 ₃	SiS_4
$La_6MgSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$La_6NiSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$La_6Sn_{0.5}Si_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$La_6CoSi_2S_{14}$	<i>P</i> 6 ₃	SiS ₄
$Dy_6MnSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$Er_6MnS_{14}Si_2$	<i>P</i> 6 ₃	SiS_4
$Y_6FeSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$Gd_6MnSi_2S_{14}$	<i>P</i> 6 ₃	SiS ₄
$Nd_6MnSi_2S_{14} \\$	<i>P</i> 6 ₃	SiS_4
$Pr_6MnSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$Sm_6MnSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$Tm_6MnSi_2S_{14}$	<i>P</i> 6 ₃	SiS ₄
$Y_6MnSi_2S_{14}$	<i>P</i> 6 ₃	SiS ₄
$La_6Cu_2(SiS_4)_2S_6$	<i>P</i> 6 ₃	SiS_4
$La_6FeSi_2S_{14}$	<i>P</i> 6 ₃	SiS_4
$La_6PdSi_2S_{14}$	<i>P</i> 6 ₃	SiS ₄
$NaY_3S_3(SiS_4)$	<i>P</i> 6 ₃	SiS_4
$Gd_3(CuS_3)(SiS_4)$	<i>P</i> 6 ₃	SiS_4
CuCe ₃ S ₃ (SiS ₄)	<i>P</i> 6 ₃	SiS ₄
$NaSm_3S_3(SiS_4)$	<i>P</i> 6 ₃	SiS ₄
$Ba_8Si_2US_{14}$	<i>C</i> 2/ <i>m</i>	SiS ₄

Compounds	Eg(eV)	d _{ij} (×AGS)	LDT(×AGS)	PM/NPM	Ref.
[Sr ₄ Cl ₂][Si ₃ S ₉]	4.22	1.2	12	PM	This work
Li[LiCs2Cl][Ga3S6]	4.18	0.7	4.1	PM	[9]
$[CsBa_3Cl_2][Ga_5S_{10}]$	3.96	0.9	6.7	PM	[10]
$[RbBa_3Cl_2][Ga_5S_{10}]$	3.95	0.93	6.5	PM	[10]
$[KBa_{3}Cl_{2}][Ga_{5}S_{10}]$	3.93	0.95	6.3	PM	[10]
$[Ba_4Cl_2][ZnGa_4S_{10}]$	3.85	1.1	51	PM	[11]
$K_2Ba_3Ge_3S_9Cl_2$	3.69	0.34	28.8	N/A	[12]
[Rb ₃ Cl][Ga ₃ PS ₈]	3.65	1.1	37	PM	[13]
[K ₃ Cl][Ga ₃ PS ₈]	3.6	1	39	PM	[13]
[KBa ₄ Cl][Ge ₃ S ₁₀]	3.57	0.82	N/A	NPM	[14]
[NaSr ₄ Cl][Ge ₃ S ₁₀]	3.54	1.08	N/A	NPM	[14]
$[\mathrm{KSr}_4\mathrm{Cl}][\mathrm{Ge}_3\mathrm{S}_{10}]$	3.51	0.91	N/A	NPM	[14]
NaBa4Ge3S10Cl	3.49	0.33	20	N/A	[15]
[CsBa ₂ Cl][Ga ₄ S ₈]	3.35	0.9-1.0	11-12	PM	[16]
[RbBa ₂ Cl][Ga ₄ S ₈]	3.3	0.9-1.0	11-12	PM	[16]
[KBa ₃ Cl ₂][Ga ₅ Se ₁₀]	3.25	0.9	9.7	NPM	[17]
[K4Cl][CdGa9S16]	3.14	0.9	22.6	PM	[18]
[Ba ₄ Cl ₂][ZnGa ₄ Se ₁₀]	3.08	1.6	17	NPM	[19]
CsHg ₃ P ₂ S ₈ Cl	3	0.8	N/A	PM	[20]

Table S3. The optical band gap and SHG response of the reported IR NLO chalcohalides ($E_g > 3.0 \text{ eV}$).

Compounds	damage energy (mJ)	spot diameter (mm)	LDT (MW/cm²)	LDT (× AGS)*
$AgGaS_2$	0.92	0.5	4.69	1
$[Sr_4Cl_2][Si_3S_9]$	10.70	0.5	54.49	~12

Table S4. LDTs of title compound and $AgGaS_2$ (as the reference).

Dipole Moment						
				Ma	agnitude	
Unit	<i>x</i> (a)	<i>y</i> (b)	<i>z</i> (c)	Debye	×10 ⁻⁴ esu·cm/Å ³	
[Sr ₄ Cl ₂][Si ₃ S ₉]						
SiS ₄	0.00	0.00	13.20	13.20	0.03	

Table S5. Dipole moment of SiS_4 in the $[Sr_4Cl_2][Si_3S_9]$.

Compounds	Space group	Eg(eV)	$d_{ij}(\times AGS)$	LDT(× AGS)	Ref.
$[Sr_4Cl_2][Si_3S_9]$	$P6_3$	4.22	1.2	12	This work
$Ba_4Ge_3S_9Cl_2$	$P6_3$	2.91	2.4	N/A	[21]
$Ba_4Si_3Se_9Cl_2$	$P6_3$	1.76	0.5	N/A	[21]
$Ba_4Ge_3Se9Cl_2$	$P6_3$	1.89	0.5	N/A	[21]
$Ba_4Si_3Se_9Br_2$	$P6_{3}$	2.96	3.2	N/A	[22]
Ba ₄ Ge ₃ Se ₉ Br ₂	<i>P</i> 6 ₃	2.60	3.5	N/A	[22]

Table S6. Property comparison of the $[Ae_4X_2][M^{IV}_3Q_9]$ system.

*AGS = AgGaS₂

No.	Compounds	<i>E</i> _g (eV)	d _{ij} (×AGS)	LDT(×AGS)	PM/NPM	Ref.
1	Li[LiCs ₂ Cl][Ga ₃ S ₆]	4.18	0.7	4.1	PM	[9]
2	$[CsBa_3Cl_2][Ga_5S_{10}]$	3.96	0.9	6.7	PM	[10]
3	$[RbBa_{3}Cl_{2}][Ga_{5}S_{10}]$	3.95	0.93	6.5	PM	[10]
4	$[KBa_{3}Cl_{2}][Ga_{5}S_{10}]$	3.93	0.95	6.3	PM	[10]
5	$[Ba_4Cl_2][ZnGa_4S_{10}]$	3.85	1.1	51	PM	[11]
6	$K_2Ba_3Ge_3S_9Cl_2$	3.69	0.34	28.8	N/A	[12]
7	[Rb ₃ Cl][Ga ₃ PS ₈]	3.65	1.1	37	PM	[13]
8	[K ₃ Cl][Ga ₃ PS ₈]	3.6	1	39	PM	[13]
9	[KBa ₄ Cl][Ge ₃ S ₁₀]	3.57	0.82	N/A	NPM	[14]
10	$[NaSr_4Cl][Ge_3S_{10}]$	3.54	1.08	N/A	NPM	[14]
11	$[\mathrm{KSr}_4\mathrm{Cl}][\mathrm{Ge}_3\mathrm{S}_{10}]$	3.51	0.91	N/A	NPM	[14]
12	NaBa ₄ Ge ₃ S ₁₀ Cl	3.49	0.33	20	N/A	[15]
13	$[CsBa_2Cl][Ga_4S_8]$	3.35	0.9-1.0	11-12	PM	[16]
14	[RbBa ₂ Cl][Ga ₄ S ₈]	3.3	0.9-1.0	11-12	PM	[16]
15	[KBa ₃ Cl ₂][Ga ₅ Se ₁₀]	3.25	0.9	9.7	NPM	[17]
16	[K ₄ Cl][CdGa ₉ S ₁₆]	3.14	0.9	22.6	PM	[18]
17	$[Ba_4Cl_2][ZnGa_4Se_{10}]$	3.08	1.6	17	NPM	[19]
18	$CsHg_3P_2S_8Cl$	3	0.8	N/A	PM	[20]
19	$[Ba_4Cl_2][HgGa_4S_{10}]$	2.95	1.5	15	N/A	[23]
20	$Ba_4Ge_3S_9Cl_2$	2.91	2.4	N/A	NPM	[21]
21	$Ag_5PS_4Cl_2$	2.71	2.5	3.8	PM	[24]
22	$[Rb_4C1][Cd_{11}In_9S_{26}]$	2.32	0.23	4.9	N/A	[25]
23	$La_{6}Cd_{0.75}Ga_{2}S_{11.5}Cl_{2.5}$	2.28	0.8	N/A	N/A	[26]
24	Cu ₆ PS ₅ Cl	2.22	2	N/A	N/A	[27]
25	Ag ₆ PS ₅ Cl	2.01	2.7	N/A	N/A	[27]
26	[K ₄ Cl][CdGa ₉ Se ₁₆]	1.72	2.4	N/A	PM	[18]
27	$Ba_4Ge_3Se_9Cl_2$	1.89	1	N/A	NPM	[21]
28	$Ba_4Si_3Se_9Cl_2$	1.76	1	N/A	NPM	[21]
29	$La_{6}Cd_{0.75}Ga_{2}Se_{11.5}Cl_{2.5}$	1.65	0.1	N/A	N/A	[26]

 Table S7. Property comparison of the reported NLO chalcohalides.

No.	Compounds	E _g (eV)	d _{ij} (×AGS)	LDT(×AGS)	PM/NPM	Ref.
1	SrLi ₂ SiS ₄	3.94	0.4	21	PM	[28]
2	Li_2ZnSiS_4	3.9	1.1	10	PM	[29]
3	$SrNa_2SiS_4$	3.87	0.4	17	PM	[28]
4	Li ₂ CdSiS ₄	3.76	1	N/A	PM	[30]
5	$BaGa_2SiS_6$	3.75	1	N/A	PM	[31]
6	$Li_2In_2SiS_6$	3.61	1	N/A	N/A	[32]
7	β -Cu ₂ ZnSiS ₄	3.2	1.2	N/A	N/A	[33]
8	SrCu ₂ SiS ₄	3.04	0.78	8	PM	[28]
9	α -Cu ₂ ZnSiS ₄	3	1.2	N/A	N/A	[33]
10	$Na_2Hg_3Si_2S_8$	2.86	1.3	4.5	PM	[34]
11	Cd_4SiS_6	2.75	1.3	N/A	N/A	[35]
12	Li ₂ HgSiS ₄	2.68	0.8	3	NPM	[36]
13	Na ₂ In ₂ SiS ₆	2.47	4.3	6.9	PM	[37]
14	SrAg ₂ SiS ₄	2.08	0.6	N/A	N/A	[38]
15	$La_6PdSi_2S_{14}$	1.41	3.7	3	PM	[39]

 Table S8.
 Property comparison of the reported NLO thiosilicates.

(a)

S21

Fig. S1. The whole structures and link modes of SiS_4 units in (a) $Na_2Si_2S_5$; (b) $Cu_4NiSi_2S_7$; (c) $Li_2MgSi_2S_6$; (d) $Cs_4Si_2S_6$ and (e) $Cs_2ZnSi_3S_8$.

(e)

Cs+1 Zn+2 Si+4

Fig. S2. Powder XRD patterns of title compound.

0 9,800 counts in 97 seconds	199 baabad daga bila bila da bila ada ada ada ada ada ada 5 6 7 8 9	10 11 12 13 14 15	16 17 18 19
Element	Weight%	Atomic%	Formula
Sr	42.38	20.99	4.198
Si	11.60	17.92	3.584
S	36.77	49.76	9.952
Cl	9.26	11.33	2.266

 $Formula: Sr_{4.198}Si_{3.584}S_{9.952}Cl_{2.266}$

Fig. S3. The SEM-EDS diagram of [Sr₄Cl₂][Si₃S₉].

Fig. S5. Band structures of (a) $[Sr_4Cl_2][Si_3S_9]$ and (b) Sr_2SiS_4 .

Fig. S6. IR spectrum of $[Sr_4Cl_2][Si_3S_9]$.

5. References

- SAINT, version 7.60A; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2008.
- [2] Sheldrick, G. M. SHELXTL, version 6.14; Bruker Analytical Xray Instruments, Inc.: Madison, WI, 2003.
- [3] A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
- [4] S. K. Kurtz and T. T. Perry, J. Appl. Phys. 1968, 39, 3798.
- [5] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 2005, 220, 567.
- [6] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [7] A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, *Phys. Rev. B* 1990, 41, 1227.
- [8] R. W. Godby, M. Schluter, L. J. Sham, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 10159.
- [9] B.W. Liu, X. M. Jiang, B. X. Li, H. Y. Zeng and G. C.Guo, Angew. Chem. Int. Ed., 2020, 59, 4856-4859.
- [10] B.W. Liu, H.Y. Zeng, X. M. Jiang and G.C. Guo, CCS Chemistry, 2020, 3, 964-973.
- [11] H.Chen, Y.Y.Li, B. Li, P.-F. Liu, H. Lin, Q.L. Zhu and X.T. Wu, Chem. Mater., 2020, 32, 8012-8019.
- [12] W. Zhou, Z.H. Shi, W. Liu and S.P. Guo, J. Alloys Compd., 2022, 895, 162602.
- [13] B.W. Liu, H. Y. Zeng, X. M. Jiang, G. E. Wang, S. F. Li, L. Xu and G. C. Guo, *Chem. Sci.*, 2016, 7, 6273-6277.
- [14] Y. Song, S. Cui, Z. Qian, H. Yu, Z. Hu, J. Wang, Y. Wu and H. Wu, *Inorg. Chem. Fron.*, 2022, 9, 5932-5940.
- [15] K. Feng, L. Kang, Z. Lin, J. Yao and Y. Wu, J. Mater. Chem. C, 2014, 2, 4590-4596.
- [16] B.W. Liu, X.M. Jiang, H.-Y. Zeng and G.-C. Guo, J. Am. Chem. Soc., 2020, 142, 10641-10645.
- [17] P. Yu, L.J. Zhou and L. Chen, J. Am. Chem. Soc., 2012, 134, 2227-2235.

- [18] S. M. Pei, B.W. Liu, X.M. Jiang, Y.Q. Zou, W.F. Chen, Q.N. Yan and G.C. Guo, *Chem. Mater.*, 2021, **33**, 8831-8837.
- [19] Y.Y. Li, P.F. Liu, L. Hu, L. Chen, H. Lin, L.J. Zhou and L.M. Wu, Adv. Opt. Mater., 2015, 3, 957-966.
- [20] W. Xing, C. Tang, N. Wang, C. Li, E. Uykur, J. Wu, Z. Lin, J. Yao, W. Yin and B. Kang, *Adv. Opt. Mater.*, 2021, 9.
- [21] P. F. Liu, Y. Y. Li, Y. J. Zheng, J. S. Yu, R. H. Duan, H. Chen, H. Lin, L. Chen and L. M. Wu, *Dalton Trans.*, 2017, 46, 2715-2721.
- [22] W. Xing, N. Wang, A. K. Iyer, W. Yin, Z. Lin, J. Yao, B. Kang and A. Mar, J. Alloys Compd., 2020, 846.
- [23] Y. Zhang, H. Wu, Z. Hu, J. Wang, Y. Wu and H. Yu, *Inorg. Chem. Fron.*, 2022, 9, 4075-4080.
- [24] L. Gao, Y. Chu, X. Wu, B. Zhang and K. Wu, *Chem. Commun. (Camb.)*, 2021, 57, 8218-8221.
- [25] S.M.Pei,L.T. Jiang,B.W. Liu and G.C. Guo, J. Alloys Compd., 2022, 902, 163656.
- [26] F. Lin, M. Luo, R. Wang, X. Che and F. Huang, CrystEngComm, 2021, 23, 2133-2137.
- [27] L. Gao, X. Wu, D. Yang, X. Tian, J. Xu, B. Zhang and K. Wu, *Dalton Trans.*, 2021, **50**, 17901-17905.
- [28] Y. Yang, K. Wu, X. Wu, B. Zhang and L. Gao, J. Mater. Chem. C, 2020, 8, 1762-1767.
- [29] G. Li, Y. Chu and Z. Zhou, Chem. Mater., 2018, 30, 602-606.
- [30] G.Li, Y. Chu, J. Li and Z.Zhou, *Dalton Trans.*, 2020, 49, 1975-1980.
- [31] W. Yin, K. Feng, R. He, D. Mei, Z. Lin, J. Yao and Y. Wu, *Dalton Trans.*, 2012, 41, 5653-5661.
- [32] W. Yin, K. Feng, W. Hao, J. Yao and Y. Wu, Inorg. Chem., 2012, 51, 5839-5843.
- [33] K. A. Rosmus, J. A. Brant, S. D. Wisneski, D. J. Clark, Y. S. Kim, J. I. Jang, C. D. Brunetta, J.-H. Zhang, M. N. Srnec and J. A. Aitken, *Inorg. Chem.*, 2014, 53, 7809-7811.

- [34] K. Wu, Z. Yang and S. Pan, Chem. Mater., 2016, 28, 2795-2801.
- [35] J. Chen, C. Lin, S. Yang, X. Jiang, S. Shi, Y. Sun, B. Li, S. Fang and N. Ye, *Cryst. Growth Des.*, 2020, 20, 2489-2496.
- [36] K. Wu and S. Pan, Crystals, 2017, 7, 107.
- [37] S.F. Li, B.W. Liu, M.J. Zhang, Y.H. Fan, H.Y. Zeng and G.C. Guo, *Inorg. Chem.*, 2016, 55, 1480-1485.
- [38] G. C. McKeown Wessler, T. Wang, J.-P. Sun, Y. Liao, M. C. Fischer, V. Blum and D. B. Mitzi, *Inorg. Chem.*, 2021, 60, 12206-12217.
- [39] G. Akopov, G. Viswanathan, N. W. Hewage, P. Yox, K. Wu and K. Kovnir, J. Alloys Compd., 2022, 902, 163756.