Supporting Information

Title: A Transparent Composite Electrode Composed of AgCr and Mo-Doped GaZnO to Realize Flexible Bottom-Emitting OLEDs

Meng-Hsuan Chiu, Dun-Cheng Huang, Cheng-Yung Ho, I-Hsuan Chaung, Yi-Ching Chen, Tzu-Hsin Hsiao, Chih-Hao Chang*

Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan.

To whom to correspond:

E-mail: chc@saturn.yzu.edu.tw (C.-H. Chang); Tel: 886-3-4638800-7517

Contents

1.	AFM	images	of	AgCr	(5	nm)	on	the	glass	substrate
	S2									
2.	Electrical	, optical pro	operties	, and figur	e of m	erit (FON	(I) of A	gCr (7 n	m)/MGZQ	O (40 nm)
	on the gla	ass substrate	S						S2	
3.	The shee	t resistance	of Ag	Cr/MGZC	comp	osite ele	ctrodes	with di	ifferent nu	umbers of

- bending cycles S3
- 3. Simulated contribution of each optical mode versus the thickness of MGZO S3
- 4. EL characteristics of device B with different numbers of bending cycles S4
- 5. Comparison of transmittance of metal alloy/TCO films reported in the literature S5

Figure S1. AFM images of AgCr (5 nm) on the glass substrate.

Table S1. Elec	strical, optical pro-	perties, and figur	e of merit (FOM)) of AgCr (7 nm)	/MGZO (40
nm) on the glas	ss substrates.				

Annealing Temp. (°C)	Rs (ohm sq ⁻¹)	Tavg. (%) (380-780 nm)	FOM (x10 ⁻³ ohm ⁻¹)
_	9.1	88.2	31.3
150	7.8	89.6	42.8
250	7.3	90.2	48.8
350	7.2	89.1	43.8
450	6.9	89.1	45.7

Structure	R_{S} (ohm sq ⁻¹)								
Bending Cycles	0	100	500	1000	2000	4000	6000	8000	10000
PET/AgCr (7 nm)/ MGZO (30 nm)	16.9	16.8	16.9	17.2	17.3	17.5	17.8	17.9	18.1
PET/AgCr (7 nm)/ MGZO (40 nm)	11.6	11.5	11.5	11.6	11.6	11.7	11.8	11.9	12.0
PET/AgCr (7 nm)/ MGZO (50 nm)	15.1	14.9	15.0	15.2	15.4	15.6	15.7	15.7	15.8

Table S2. The sheet resistance of AgCr/MGZO composite electrodes with different numbers of bending cycles.

Figure S2. Simulated contribution of each optical mode versus the thickness of MGZO of the composite electrode (glass/AgCr (7 nm)/MGZO) in the green OLEDs.

Bending Cycles	5	0	100	1000	5000	10000
External Quantum	[a]	18.9	18.6	19.9	18.5	18.5
Efficiency (%)	[b]	18.5	18.0	19.0	18.5	18.3
Luminance	[a]	67.1	65.5	68.9	64.1	64.3
(cd A ⁻¹)	[b]	65.7	63.2	65.9	63.8	63.5
Power Efficiency	[a]	87.9	84.9	89.1	74.8	75.9
(lm W ⁻¹)	[b]	69.3	68.9	71.9	69.3	69.2
Turn-on Voltage (V)	[c]	2.4	2.3	2.3	2.3	2.3
CIE 1931	[b]	(0.33, 0.61)	(0.34, 0.60)	(0.33, 0.60)	(0.34, 0.60)	(0.34, 0.60)
(x, y)	[d]	(0.32, 0.61)	(0.34, 0.60)	(0.33, 0.60)	(0.34, 0.60)	(0.34, 0.60)
Maximum Lumina (cd m ⁻²) [V]	ince	83850 [9.4]	77091 [8.6]	75898 [8.8]	71411 [9.0]	78037 [9.6]

Table S3. EL characteristics of device B with different numbers of bending cycles.

[a] Maximum efficiency. [b] Recorded at 10² cd m⁻². [c] Turn-on voltage measured at 1 cd m⁻².

[d] Recorded at 10^3 cd m⁻².

Yea r	Substrate	Metal or metal alloy + TCO	Transmittance (%)	Ref.
2008	Glass	Ag (deposition time: 30 s)/ ZnO (50 nm)	82% @ 550 nm	1
2010	PET	ZrCu (6 nm)/ITO (30 nm)	62.6% @ 550 nm	2
2010	PET	Ag (6 nm)/ITO (30 nm)	72.2% @ 550 nm	2
2010	Glass	AgTi (6 nm)/ZnO (20 nm)	89.5% @ 500 nm	3
2014	Glass	ZrCu (3 nm)/ITO (30 nm)	73% @ 550 nm	4
	Glass	AgMgAl (15 nm)/ITO (30 nm)	70% @ 550 nm	4
2019	Glass	Ag ₆₆ Zr ₃₄ (10 nm)/ITO (30 nm)	64.0% (T _{avg.} :200–1100 nm)	5
2019	Glass	AZO (200 nm)/Ag (16 nm)	< 50% @ 550 nm	6
	Glass	AgCr (7 nm)/MGZO (40 nm)	90.1% @ 550 nm	This
2023	PET	AgCr (7 nm)/MGZO (40 nm)	90.8% @ 550 nm	work

Table S4. Comparison of transmittance of metal alloy/TCO films reported in the literature.

Reference

- 1. Y.-S. Rim, S.-M. Kim and K.-H. Kim, Jpn. J. Appl. Phys., 2008, 47, 5022.
- 2. C. J. Lee, H. K. Lin, S. Y. Sun and J. C. Huang, Appl. Surf. Sci., 2010, 257, 239–243.
- K. S. Kao, D. L. Cheng, S. H. Chang, P. T. Hsieh, H. S. Chin and H. K. Lin, *Appl. Surf. Sci.*, 2010, 256, 7446–7450.
- 4. H. K. Lin, K. C. Cheng, T. P. Cho and J. C. Huang, *Mater. Sci. Forum*, 2014, **783-786**, 1913–1919.
- C. M. Chang, H. K. Lin, U.G. Huang, H. A. Hong and J. C. Huang, *Opt. Lasers Eng.*, 2019, 115, 100–106.
- 6. A. Bahadoran and N. Zare-Dehnavi, Mater. Res. Express, 2019, 6, 026406.