# Efficient Pink Luminescent Eu(III) Coordination Polymer Excited on Blue LED Chip

#### Nafisa A. Abusail,<sup>a</sup> Najat Al Riyami, Rashid Ilmi<sup>a</sup>, Muhammed S. Khan<sup>a</sup> and Nawal K. Al-Rasbi<sup>a\*</sup>

<sup>a</sup>Dept. of Chemistry, College of Science, Sultan Qaboos University, Al- Khode 123, OMAN, Fax: +968 24141469, E-mail: <u>nrasbi@squ.edu.om</u>







Figure S1: ESI-Mass spectra of (a) Eu1 and (b) Eu2 polymers.



(b)



Figure S2: The solid-state FTIR Spectra of (a) Eu1 and (b) Eu2 polymers.

2



Figure S3: TGA curves of (a) Eu1 and (b) Eu2 recorded under an inert atmosphere of N<sub>2</sub>.



**Figure S4:** The UV/Vis absorption spectrum of DHTP in THF ( $1 \times 10^{-5}$  M) at 298 K.



**Figure S5:** The luminescence Spectre of **Gd1 CP** in ethanol  $(1 \times 10^{-5} \text{ M})$  at 300 K and 77 K.



Scheme S6: Representation of the energy transfer pathways from DHTP and TTA to the Eu(III) and Gd(III) centres.



Figure S7: The luminesce decay of Eu(III) in Eu2 CP in the solid state at RT.



Figure S8: Right: the Eu2/InGaN chip device under a UV lamp.

## Comments on Checkcif alerts

## Eu1

Alert level A PLAT971\_ALERT\_2\_A Check Calcd Resid. Dens. 0.67 Ang From Eu1... 4.12 eA<sup>-3</sup> PLAT973\_ALERT\_2\_A Check Calcd Positive Resid. Density on Eu1... 2.44 eA<sup>-3</sup> Response: The high residual densities could be caused by un-efficient absorption corrections.

## Alert level B

PLAT112\_ALERT\_2\_B ADDSYM Detects New (Pseudo) Symm. Elem. m 100 %Fit PLAT112\_ALERT\_2\_B ADDSYM Detects New (Pseudo) Symm. Elem. n 100 %Fit PLAT113\_ALERT\_2\_B ADDSYM Suggests Possible Pseudo/New Space Group Pnma Check **Response:** The ADDSYM alert is false. The structure could not be solved in Pnma.

PLAT213\_ALERT\_2\_B Atom C6 has ADP max/min Ratio ..... 4.6 prolat

PLAT306\_ALERT\_2\_B Isolated Oxygen Atom (H-atoms Missing ?) ...... O1W Check PLAT306\_ALERT\_2\_B Isolated Oxygen Atom (H-atoms Missing ?) ...... O2W Check **Response:** Hydrogen atoms to water molecules were not added to keep the refinement stable.

PLAT430\_ALERT\_2\_B Short Inter D...A Contact O1W ..O7 . 2.78 Ang. x,1/2-y,-1/2+z = 4\_565 Check PLAT430\_ALERT\_2\_B Short Inter D...A Contact O2W ..O5 . 2.78 Ang. x,y,z = 1\_555 Check **Response:** The water molecules coordinating to the Eu(III) centre are disordered by two positions.

PLAT934\_ALERT\_3\_B Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers .. 4 Check **Response:** 

PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.73Ang From Eu1 3.46 eA-3 PLAT971\_ALERT\_2\_B Check Calcd Resid. Dens. 0.98Ang From O10 2.96 eA-3 PLAT976\_ALERT\_2\_B Check Calcd Resid. Dens. 0.75Ang From O2 . -1.66 eA-3 **Response:** The high residual densities could be caused by un-efficient absorption corrections.

## Eu2

Alert level B PLAT201\_ALERT\_2\_B Isotropic non-H Atoms in Main Residue(s) ...... 1 Report C22B Response: Due to disorder of C22 in TTA units. The atom was refined isotropically.

PLAT220\_ALERT\_2\_B NonSolvent Resd 1 C Ueq(max) / Ueq(min) Range 6.9 Ratio **Response:** This is unremarkable for the structure where significant disorder in the TTA units.

PLAT230\_ALERT\_2\_B Hirshfeld Test Diff for S1 --C9 . 7.3 s.u. **Response:** Due to disorder in the fluorine atom in TTA. This does not indicate an incorrect atom-type assignment.