Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Reversible Zn²⁺/Al³⁺ intercalation in niobium-substituted polyoxometalates and demonstration of energy storage smart window

Tong Feng^{a, b}, Huili Guo^a, Xiaoxiao Xing^a, Yan Bai^{a, *}, Dongbin Dang^{a, *}, Weizhen Zhao^{b, *}

^a Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China

^b Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China

* Corresponding author: E-mail address: <u>baiyan@henu.edu.cn</u> (Y. Bai), <u>dangdb@henu.edu.cn</u> (D.-B. Dang), <u>wzzhao@ipe.ac.cn</u> (W.-Z. Zhao).

Fig. S1 Transmission electron microscopy (TEM) image of (a) $P_2W_{15}Nb_3$ -TiO₂ composite film and (b)

TiO₂ film.

Fig. S2 (a) Top-view SEM images of TiO_2 film. (b) Cross-sectional SEM image of $P_2W_{15}Nb_3\text{-}TiO_2$

composite film.

Fig. S3 CV curves of the P2W15Nb3-TiO2 composite film in 1 M Zn(ClO4)2-Al(ClO4)3, Zn(ClO4)2,

Al(ClO₄)₃.

Fig. S4 Visible near-infrared transmittance spectra of P2W15Nb3-TiO2 composite film measured from -

1 to 0.4 V in (a) 1 M $Zn(ClO_4)_2$ -Al(ClO₄)₃, (b) $Zn(ClO_4)_2$, (c) Al(ClO₄)₃, respectively.

Fig. S5 W 4f XPS spectra of self-colored $P_2W_{15}Nb_3$ -TiO₂ composite film in 1 M (a) Zn(ClO₄)₂, (b) Al(ClO₄)₃ electrolyte.

Fig. S6 (a) XPS full survey of $P_2W_{15}Nb_3$ -TiO₂ composite film. (b) Al 2p and (c) Zn 2p XPS spectra of colored $P_2W_{15}Nb_3$ -TiO₂ composite film in 1 M Zn(ClO₄)₂-Al(ClO₄)₃ electrolyte. (d) TOF-SIMS depth

profiles of $P_2W_{15}Nb_3$ -TiO₂ composite film that measure at -1 V in 1 M Zn(ClO₄)₂-Al(ClO₄)₃ electrolyte.

Fig. S7 (a) SEM image of NiO nanosheets. (b,c) Visible near-infrared transmittance spectra and dynamic optical transmittance measurements of the NiO film measured at -0.2 and 1 V in 1 M Zn(ClO₄)₂-Al(ClO₄)₃ electrolyte. (d) CV curves of the NiO film in 1 M Zn(ClO₄)₂-Al(ClO₄)₃ electrolyte.

Fig. S8 Areal capacitances of EESD at different current densities.

Table S1 Comparison of Current State-of-the-Art Electrochromic Films and Devices

Materials	Film or Device	ΔT	Response Time $T_b/T_c(s)$	CE (cm ² C ⁻¹)	Areal Capability (mF cm ⁻²)	Spectal selectivity	Reference
P ₂ W ₁₅ Nb ₃ -TiO ₂	Film	∼90% 650 nm	18/8	136	52	350-1500	This work
	Device	~64% 650 nm	14/4	88	5.86	nm	
Polyoxometalates-W ₁₈ O ₄₉	Film	~30% 500 nm	86/26	_	_	350-1400 nm	Gu et al ¹
WO _{3-x}	Film	~93% 633 nm	13/16	_	_	350-1800	Zhang
	Device	~73% 650 nm	_	_	_	nm	et al ²
NiO-PB	Film	~60% 630 nm	3.8/1.6	45.3	_	350-1000	Pan
	Device	∼67% 630 nm	7.9/2.8	109	11.5	nm	et al ³
WO ₃	Device	∼62% 650 nm	1.95/1.84	139	5.12	350-800 nm	Bi et al4
PICA	Film	~43% 490 nm	0.7/1.7	142	16.2	350-1000	Li
	Device		-	-	4.3	nm	et al ³
NW-P ₂ W ₁₇ -Cu(phen) ₂	Film	~44% 490 nm	9.5/2.9	50.4	_	400-800 nm	Chu et al ⁶

Reference

- 1. H. Gu, C. Guo, S. Zhang, L. Bi, T. Li, T. Sun and S. Liu, ACS Nano, 2018, 12, 559-567.
- 2. S. Zhang, S. Cao, T. Zhang, A. Fisher and J. Y. Lee, *Energy Environ. Sci.*, 2018, 11, 2884-2892.
- J. Pan, R. Zheng, Y. Wang, X. Ye, Z. Wan, C. Jia, X. Weng, J. Xie and L. Deng, Sol. Energy Mater. Sol. Cells, 2020, 207, 110337.
- 4. Z. Bi, X. Li, Y. Chen, X. He, X. Xu and X. Gao, ACS Appl Mater Interfaces, 2017, 9, 29872-29880.
- 5. J. Li, Q. Guo, Y. Lu and G. Nie, European Polymer Journal, 2019, 113, 29-35.
- D. Chu, X. Qu, S. Zhang, J. Zhang, Z. Liu, L. Zhou and Y. Yang, Asia-Pac. J. Chem. Eng., 2022, 2779, 1-9.