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17 Calculation of the thermal conductivity of aerogels

18 The thermal conductivity of aerogel can be calculated from the contributions from thermal 

19 radiation and conduction, as follows:

20 (S1)𝜆𝑡𝑜𝑡𝑎𝑙= 𝜆𝑠𝑜𝑙𝑖𝑑+ 𝜆𝑔𝑎𝑠+ 𝜆𝑟𝑎𝑑

21 where ,  and  are the solid conductivity, gas conductivity, and radiative conductivity, 𝜆𝑠𝑜𝑙𝑖𝑑 𝜆𝑔𝑎𝑠 𝜆𝑟𝑎𝑑

22 respectively. The contributions from heat conduction through solid and gas are considered as the 

23 conductive thermal conductivity, .𝜆𝑐𝑜𝑛𝑑= 𝜆𝑠𝑜𝑙𝑖𝑑+ 𝜆𝑔𝑎𝑠
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24 The solid thermal conductivity indicates the contribution from heat conduction through the 

25 solid, which can be calculated using an empirical correlation, as follows [1,2]:

26 (S2)
𝜆𝑠𝑜𝑙𝑖𝑑= 𝜆𝑠0( 𝜌𝜌0)𝛼

27 where  is the density of aerogel and  is the density of solid backbone (1,560 kg m-3 for RF 𝜌 𝜌0

28 aerogel and 1,950 kg m-3 for carbon aerogel).  is the thermal conductivity of solid backbone, 𝜆𝑠0

29 which was taken as 0.18 W m-2 K-1
 for RF aerogel [3] and as 0.7 W m-2 K-1 for carbon aerogel 

30 (adopted from the thermal conductivity of nano-sized graphite [4,5], which is in the same range of 

31 the thermal conductivity of activated carbon [5,6]). The semi-empirical constant , dependent on 𝛼

32 the random and complex pore structure, was taken as 1.2 for RF aerogel [7] and as 1.5 for carbon 

33 aerogel [8].

34 Based on the kinetic theory, the thermal conductivity of gaseous molecules in the porous 

35 structure can be calculated by the Knudsen model, as follows [9]:

36 (S3)
𝜆𝑔𝑎𝑠=

1
1 + 2𝐶1Λ𝑔/𝑑

𝜆𝑔0

37 Where  and  are, respectively, the mean free path and the thermal conductivity of gas in the Λ𝑔 𝜆𝑔0

38 bulk conduction (67 nm and 0.026 W m-1 K-1, respectively, for air at 300 K and 1 bar).  is the 𝑑

39 mean pore size. Modified from the value around 2 for thermal transport of gas molecules confined 

40 by two parallel walls [9,10], the dimensionless coefficient , was taken as 1.0, based on semi-𝐶1

41 empirical fitting for the complex aerogel structures from experimental observation and those 

42 generated by the Direct Simulation Monte Carlo (DSMC) simulation [11].



43 The radiative thermal conductivity can be expressed as [3]:

44 (S4)
𝜆𝑟𝑎𝑑=

16𝑛2𝜎𝑇3

3𝜌𝐾𝑠/𝜌0

45 where  is the Stefan-Boltzmann constant (5.67037×10−8 W m−2 K−4).  is the mean absolute 𝜎 𝑇

46 temperature.   is the refractive index of aerogel, around 1.1, calculated by 𝑛

47 , with  being the refractive index of solid backbone [12].  is the mean 𝑛= 1 + (𝑛0 ‒ 1)𝜌/𝜌0 𝑛0 𝐾𝑠

48 Rosseland extinction coefficient of aerogel. The specific extinction coefficient, i.e. the ratio of the 

49 mean extinction coefficient to the density of solid backbone, , was taken as 50.1 m2 kg-1 for 𝐾𝑠/𝜌0

50 RF aerogel [1] and 1,000 m2 kg-1 for carbon aerogel [3].

51 Figure S1 shows the calculated values of the total thermal conductivity and the 

52 contributions from radiation and conduction through gas and solid for the RF aerogel and carbon 

53 aerogel samples. Figure S2 shows the calculated thermal conductivity of RF aerogel and carbon 

54 aerogels as a function of the relative density.

55



56

57 Figure S1. The calculated and measured thermal conductivities of RF aerogel and carbon aerogel 

58 samples.

59
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61 Figure S2. The calculated thermal conductivity of RF aerogel and carbon aerogel as a function of 

62 the relative density.
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