Supporting Information

AlGaN-based solar-blind UV heterojunction bipolar phototransistors: structural

design, epitaxial growth, and optoelectric properties

Yiren Chen,*a Jiawang Shi,ab Zhiwei Zhang, Guoqing Miao, Hong Jiang, and Hang Song*a

^a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine

Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

*corresponding emails: chenyr@ciomp.ac.cn and songh@ciomp.ac.cn

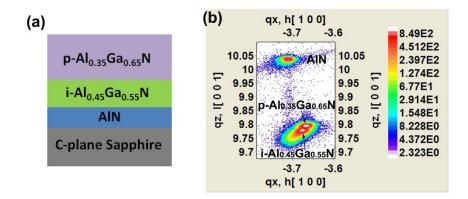


Fig. S1. (a) The epitaxial structure of p-AlGaN based on single uniform Mg doping. (b) The asymmetrical RSM around (105) reflection of the p-AlGaN material.

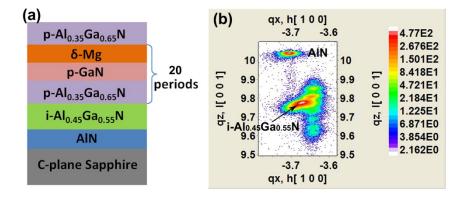


Fig. S2. (a) The epitaxial structure of p-AlGaN based on periodic uniform Mg doping and δ -Mg doping. (b) The asymmetrical RSM around (105) reflection of the p-AlGaN material.

Table I. The electrical parameters of the two p-type doping AlGaN measured by Hall testing

Sample	Epitaxial structure	Carrier concentration (cm ⁻³)	Hall mobility (cm ² /V·s)
--------	---------------------	---	--------------------------------------

Fig. S1	uniform Mg doping	NA	NA
Fig. S2	periodic uniform Mg	2.16×10^{18}	0.4602
	doping and δ -Mg doping		

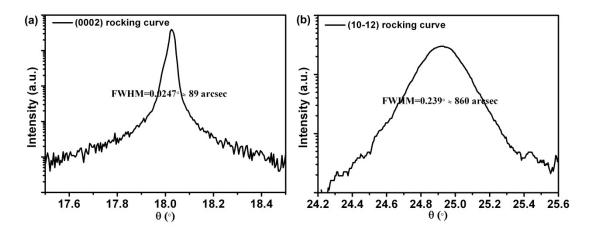


Fig. S3. (a) (0002)-plane and (b) (102)-plane rocking curves of the used AlN template.