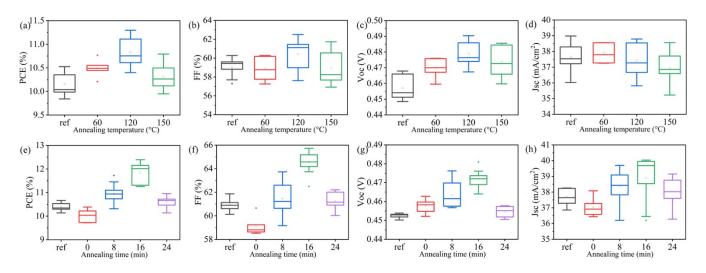
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023


Supporting Information

Modification of back interfacial contact with MoO₃ layer in-situ introduced by Na₂S aqueous solution for efficient kesterite CZTSSe solar cells

Yue Jian, Tianliang Xie, Litao Han^{*}, Dongxing Kou, Wenhui Zhou, Zhengji Zhou, Shengjie Yuan, Yuena Meng, Yafang Qi, and Sixin Wu^{*}.

Key Laboratory for Special Functional Materials of MOE, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Materials, Henan University, Kaifeng 475004, P. R. China.

*E-mail: hlt@henu.edu.cn; wusixin@henu.edu.cn.

Figure S1. Photovoltaic parameters of the devices fabricated on the Mo substrate with Na₂S layer annealed at different temperature: a) PCE, b) FF, c) V_{OC} and d) J_{SC} , and annealed for different time: e) PCE, f) FF, g) V_{OC} and h) J_{SC} .

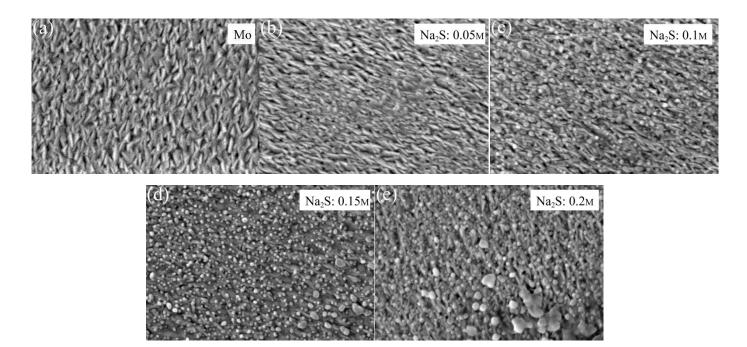
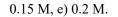



Figure S2. The morphologies of spin-coated Na₂S on Mo surface with various mole rations: a) 0 M, b) 0.05 M, c) 0.1 M, d)

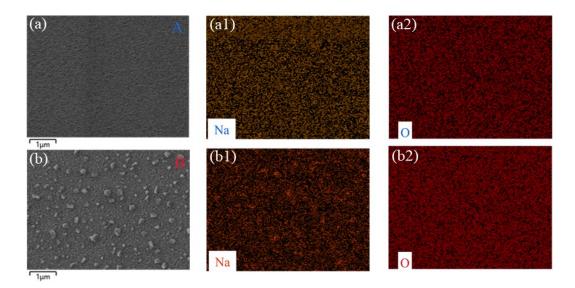
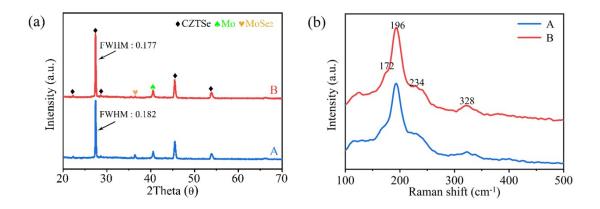



Figure S3. EDS maps of the substrate (a) A and (b) B.

Table S1. Quantitative EDX analysis of Na, Mo and O content for back contact surfaces of A and B.

Substrate	Мо	0	Na	S
А	88.94	11.06	0	0
В	76.37	21.26	1.39	0.98

Figure S4. (a) XRD spectra of CZTSSe film without (A) and with (B) Na₂S layer. (b) Raman spectra of the film A and B. The intensity of (112) diffraction peaks of CZTSSe located at 27.18° (JCPDS#52-0868) increases a little on substrate B. And there is a narrowing of the FWHM from 0.182 for film A to 0.177 for film B, suggesting the improved crystalline quality. The crystalline quality is further revealed by Raman measurement. In addition, XRD and Raman spectroscopy demonstrates that the Na₂S aqueous solution does not cause the formation of secondary phase in the absorber layer.

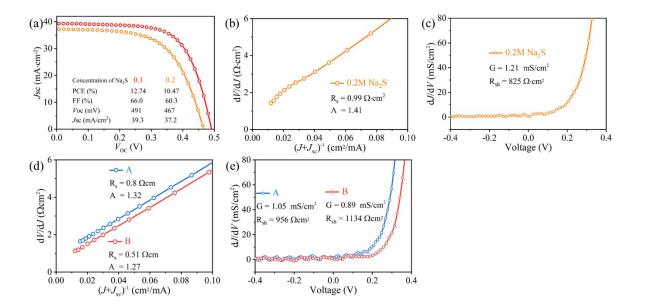


Figure S5. (a) J-V curves of the champion devices prepared on the substrates treated with 0.1 M and 0.2 M Na₂S; (b) dV/dJ vs $(J + Jsc)^{-1}$ and (c) dJ/dV vs V redrawn from the standard light J–V curves of the champion device prepared on the substrates treated with 0.2 M Na₂S; Plots of (d) dV/dJ vs $(J + Jsc)^{-1}$ and (e) dJ/dV vs V redrawn from the standard light J–V

curves of device A and B ($0.1 \text{ M Na}_2\text{S}$).

Concentration of Na ₂ S			J _{SC} [mA/cm ²]				$G_{ m sh}$ [mS·cm ²]
0.1 M	12.74	491	39.3	66.0	0.51	1113	0.90
0.2 M	10.47	467	37.2	60.3	0.99	825	1.21

Na₂S. Both devices were fabricated from the same batch.

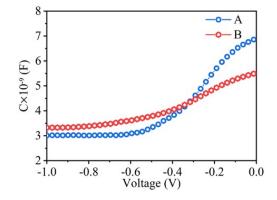


Figure S6. C-V curves of the champion device A and B.

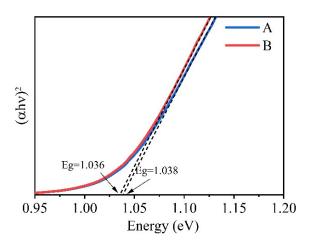


Figure S7. The optical band gap of the film A (1.036 eV) and B (1.038 eV) calculated from the UV-vis transmission

spectra. The Na₂S layer spin-coated on the Mo substrate will not change the band gap of the CZTSSe absorbers.