Supporting Information

Improved Exciton Photoluminescence of Zndoped Quasi-2D Perovskite Nanocrystals and Its Application as Luminescent Material in Lightemitting Devices

Lei Song, ^a Qiong Zhang, ^a Shahid Ullah, ^a Yuxin Liu, ^a Kangning Liu, ^a and Jun Dai ^{a, *}

a. Department of Physics, Jiangsu University of Science and Technology, Zhenjiang,

212100, China. E-mail: daijun@just.edu.cn

Figure S1. (a) SEM image of 20%Zn-PEA₂CsPb₂Br₇ NCs powders and corresponding (b-e) elemental mapping images of Zn, Br, Cs, and Pb elements.

Figure S2. Energy dispersive spectroscopy (EDS) of (a) PEA2CsPb2Br7 NCs, and 20%Zn-

PEA₂CsPb₂Br₇NCs (b) before and (c) after repeated cleaning with antisolvent ethyl acetate.

Figure S3. High resolution XPS spectra of Zn 2p with different proportions of Zn.

Figure S4. High resolution XPS spectra of 20%Zn-PEA2CsPb2Br7 NCs with and without Ar

ions etching.

Figure S5. The cross-section SEM image of A1 film constructed on quartz substrate.

Figure S6. The SEM image of bare Al film morphology.

Figure S7. (a) PL spectra of green LED fabricated by PEA₂CsPb₂Br₇NCs at different injected currents of 10-120 mA. (b) Time-dependent PL spectra of green LED fabricated by PEA₂CsPb₂Br₇NCs at operating current of 30 mA.

Table S1. EDS analysis of PEA₂CsPb₂Br₇ NCs, and 20%Zn-PEA₂CsPb₂Br₇ NCs before and after repeated cleaning with antisolvent CB.

Sample		Zn/(Zn+Pb)			
	Cs	Pb	Br	Zn	ratios %
Pristine NCs	12.1	23.1	64.8	0	0
Unwashed 20%Zn-NCs	8.1	25.6	64.1	2.2	7.9
Washed 20%Zn-NCs	12.0	32.5	54.4	1.1	3.3

Table S2. Atomic ratio of perovskite NCs with different ratios of Zn^{2+} (0%, 10%, 20%, 30%)

Zn/Pb mole		Zn/(Zn+Pb)			
feeding ratios	Cs	Pb	Br	Zn	mole ratios %
0	13.77	15.14	71.09		0.00
0.1	13.21	15.2	71.04	0.55	3.49
0.2	14.43	14.34	70.08	1.15	7.42
0.3	14.49	15.07	68.46	1.99	11.66

using XPS analysis.

Calculation of fluorescence decay parameters

The PL decay curves of 20% Zn-doped and pristine perovskite NCs can be fitted by the following triple-exponential decay function

$$I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)$$
(1)

where A_1 , A_2 , A_3 are the weight factor of different decay channels and τ_1 , τ_2 and τ_3 are the corresponding decay lifetime constants. Based on these decay parameters, the average lifetime can be determined as

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$

(2)