Supporting Information

Syntheses and Properties of 11-Ring-Fused Linear Thienoacenes

Table of Contents

- 1. Experiment and device fabrication
- 2. Synthesis, NMR, and MS spectra
- 3. Optical spectra
- 4. DFT Calculation
- 5. CV Curves
- 6. Thermology Curves
- 7. Single crystal structures
- 8. OFET Characteristics

1. Experiment and device fabrication

The energy level calculation method was used to determine the HOMO.

$$E_{HOMO} = -(E_{ox}^{\text{onset}} - \text{Fc}/\text{Fc}^+ + 4.8)$$

$E_{LOMO} = E_g + E_{HUMO}$

Unless otherwise noted, all reagents were obtained from commercial suppliers and were used without further purification. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained on Bruker 400 M nuclear resonance spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, and m =multiplet. Flash column chromatography was performed using 200-300 mesh silica gel. To gain more insight into the frontier energy levels, density functional theory (DFT) calculations were performed on all the products using Gaussian 09 program with the 6-31G(d) basis set. The geometries of molecules at ground state were optimized with DFT at the m062x/6-31g(d) level using Gaussian program. In order to investigate the photophysical properties, the excited electronic structures of molecules were calculated at the PBE0/TZVP level with the time-dependent density functional theory (TD-DFT) method, and the excited energy and oscillator strength can also be obtained from the calculation result at the same time. The UV absorption spectroscopy were obtained by broaden the oscillator strength at corresponding excited energy using Multiwfn program.

OFET devices were fabricated in a BGBC configuration on Si/SiO₂ substrates with 50 nm thick gold electrodes. The SiO₂ dielectric layer was 300 nm thick. The source-drain electrodes were interdigitated with channel length varying from 2.5 to 40 μ m and channel width varying from 0.1

to 1 mm. Substrates were cleaned softly with IPA and acetone, making sure that the prefabricated electrodes are not damaged. Then, OTMS treatment was performed on the substrates that were placed in an oven with OTMS at a temperature of 120 °C for 5 h. The glass crucibles were cleaned thoroughly in piranha solution (3:1 solution of sulfuric acid and hydrogen peroxide) to remove all organic residues and then washed with isopropyl alcohol and acetone. A chloroform solution of BBDTB-H (5 mg mL⁻¹) was then deposited by spin-coating at 3000 rpm for 60s on the OTMS-treated substrate to form organic semiconducting layers.

2. Synthesis, ¹H-NMR ¹³C-NMR and MS spectra

The synthetic route of **DT-H** was reported in the literature.¹

Synthesis of compound 1. Under N₂ condition, **DT-H** (1.4 g, 2.19 mmol), dissolved in 120 mL dry THF and cooled to 0°C, dropped *n*-BuLi (1.6 mL, 1.6M) in the system slowly. The mixture was brought to room temperature and stirred for 2 h. Then cooled to -78°C and dropped TIPSCl (0.95mL). After stirring at room temperature overnight, the reaction was extracted with DCM (50 mL) three times and the organic layer was washed with brine several times, and dried over anhydrous MgSO₄. After the removal of solvent, the residue was purified by petroleum ether to get a yellow oil 1 (yield: 78%). ¹H NMR (400 MHz, CDCl₃, δ , ppm), δ 7.56 (d, J=5.2Hz,1H), 7.49 (s, 1H), 7.38 (d, J=5.3Hz, 1H), 3.25-3.18 (m, 4H), 1.21-1.19 (d, J=7.4Hz, 18H) ppm. MALDI-TOF MS: calculated for C₄₇H₇₄S₄Si 794.4443, found 794.4402.

Synthesis of compound 2. Compound 1(3.225 g, 0.004 mol) dissolved in 110 mL dry THF and kept the system under N_2 protection. Added NBS (1.084 g, 0.006 mol) at 0 °C, wrapped the flask with aluminum foil to avoid light, restored to room temperature slowly, and quenched by water after 12 h reaction. Extracted with DCM, washed with saturated sodium chloride solution, and

dried with anhydrous sodium sulfate. Used petroleum ether over the column. The product of this step is a yellow solid (yield: 90%). ¹H NMR (400 MHz, CDCl₃, δ , ppm), δ 7.48 (s, 1H), 7.38 (s, 1H), 3.23-3.19 (t, J=7.4Hz, 2H), 3.12-3.08 (t, J=8.6Hz, 2H), 1.21-1.18 (d, J=7.4Hz, 18H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 140.39, 139.15, 137.70, 135.02, 134.65, 133.52, 131.96, 130.84, 130.56, 127.39, 122.71, 113.88, 53.40, 31.95, 31.18, 31.00, 30.36, 30.18, 29.77, 29.74, 29.72, 29.70, 29.61, 29.49, 29.39, 22.71, 18.64, 14.12, 11.87. MALDI-TOF MS: calculated for C₄₇H₇₃BrS₄Si 872.3548, found 872.3537.

Synthesis of compound 3. **2** (200 mg, 0.23 mmol) was dissolved in 30 mL anhydrous diethyl ether under N₂ protection. The system was stirred at -78 °C for 30 min and added LDA (0.13ml, 2M), stirred at -78 °C for 30 min, then increased the temperature to 0 °C, stirred at 0 °C for 30 min, then cooled down to -78 °C, added CuCl₂ (123 mg, 0.91 mmol). After adding, moved to room temperature and stirred overnight. The mixture was extracted with DCM (50 mL) three times. After the combination, the organic layer was washed with brine several times and dried over anhydrous MgSO₄. After the removal of the solvent, the residue was purified by petroleum ether to get a yellow solid 3 (yield: 52%). ¹H NMR (400 MHz, CDCl₃, δ , ppm), δ 7.46 (s, 2H), 3.24-3.20 (t, J=7.4Hz, 4H), 3.18-3.14 (t, J=7.4Hz, 4H), 1.77-1.71 (m, 4H), 1.67-1.62 (m, 4H), 1.46-1.41 (m, 6H), 1.20-1.18 (d, J=7.4Hz, 36H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 140.36, 139.68, 138.41, 138.14, 135.26, 131.94, 30.30, 29.78, 29.75, 29.73, 29.71, 29.69, 29.62, 29.55, 29.39, 22.71, 18.65, 14.12, 11.88, MALDI-TOF MS: calculated for C₉₄H₁₄₄BrS₄Si₂ 1742.6939, found 1742.6873.

Synthesis of BBDTB-TIPS. Under N₂ condition, **3** (500 mg, 0.286 mmol) didodecylboronic acid diester (1.06 g, 1.72 mmol), degassed K₂CO₃ solution (2 M, 4 mL), degassed dry THF (100

mL) and Pd(PPh₃)₄ (150mg, 0.13mmol) were filled in a two-neck flask and the mixture was stirred at 90 °C for 12 h. The mixture was cooled to room temperature and then concentrated under reduced pressure. Finally, the crude products were purified by column chromatography using petroleum ether to afford the principal product as a yellow solid **BBDTB-TIPS** (yield: 59%).¹H NMR (400 MHz, CDCl₃, δ , ppm), δ 7.52 (s, 2H), 3.27-3.19 (m, 12H), 1.22-1.20 (d, J=7.4Hz, 36H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 139.52, 137.63, 136.70, 133.85, 133.50, 132.97, 130.80, 130.61, 130.38, 130.30, 130.23, 129.56, 129.41, 129.30, 76.15, 75.94, 75.73, 31.00, 30.97, 30.96, 30.92, 29.44, 29.29, 29.13, 28.80, 28.78, 28.74, 28.47, 21.72, 17.67, 13.12, 10.92. MALDI-TOF MS: calculated for C₁₂₀H₁₉₄S₈Si₂ 1947.2485, found 1947.2403. CCDC:2204238

By-product was obtained by column chromatography as a yellow solid **DT-DT** (yield: trace amount). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 2H), 7.48 (s, 2H), 3.17 (m, 8H), 1.73(m, 8H), 1.67(m, 8H), 1.18(d, J=8.4Hz, 18H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 140.44, 139.63, 139.03, 137.70, 136.52, 135.16, 134.32, 133.75, 131.92, 131.06, 130.58, 127.41, 116.44, 31.95, 31.19, 30.38, 30.22, 29.79, 29.74, 29.71, 29.67, 29.62, 29.54, 29.42, 29.40, 22.71, 18.64, 14.14, 11.85. MALDI-TOF MS: calculated for C₉₄H₁₄₆S₈Si₂ 1586.87 found 1586.9.

Synthesis of BBDTB-H. Under N₂ condition, BBDTB-TIPS (0.3 g, 6.32 mmol) was dissolved in 100 mL dry THF and put the system in the ice-water mixture for 30 min. At 0 °C, TBAF (0.3 mL, 1 mol/L) was slowly added dropwise to the system. After reacting at 0 °C for 30 min, removed the ice-water bath and stirred at room temperature for 24 h. Then added 10 mL of water to quench the reaction. and then concentrated under reduced pressure. Finally, the crude products were purified by column chromatography using petroleum ether to get a yellow solid BBDTB-H (yield: 82%).¹H NMR (400 MHz), δ 7.45 (d, J=4.8Hz, 2H), 7.26 (d, J=5.1Hz, 2H), 3.25-3.21 (m, 8H), 3.11-3.08 (m, 4H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 136.02, 134.82, 134.37, 134.11, 133.99, 131.63, 131.36, 131.33, 131.31, 131.23, 130.67, 130.40, 127.85, 119.72, 77.22, 77.01, 76.79,
32.00, 31.98, 31.96, 29.88, 29.85, 29.82, 29.80, 29.75, 29.47, 29.43, 22.73, 22.70. MALDI-TOF
MS: calculated for C₁₀₂H₁₅₄S₈ 1634.9816, found 1634.9841.

Synthesis of BBDTB-Br. Compound BBDTB-H (24 mg, 0.04 mmol) dissolved in 6 mL dry THF, keep the system under N₂ protection, Added NBS (22 mg, 1.2 tendency for) at 0 °C, wrapped the flask with aluminum foil to avoid light, restored to room temperature slowly, quenched by water after 12 h reaction. Extracted with DCM, washed with saturated sodium chloride solution, and dried with anhydrous sodium sulfate. Used petroleum ether over the column. The product of this step is a yellow solid (yield: 50%).¹H NMR (400 MHz), δ 7.20 (s, 2H), 3.22-3.16 (m, 8H), 3.01-2.97 (m, 4H)ppm. MALDI-TOF MS: calculated for C₁₀₂H₁₅₂Br₂S₈ 1790.8026, found 1790.7958.

Figure S1. ¹H-NMR spectra of compound **DT-H**. (400 MHz, CDCl₃, 298K)

Figure S2. ¹³C-NMR spectra of compound DT-H. (101 MHz, CDCl₃, 298K)

Figure S3. ¹H-NMR spectra of compound 1. (400 MHz, CDCl₃, 298K)

Figure S4. MALDI-TOF MS spectra of compound 1.

Figure S5¹H-NMR spectra of compound 2. (400 MHz, CDCl₃, 298K)

Figure S6. ¹³C-NMR spectra of compound **2**. (101 MHz, CDCl₃, 298K)

Figure S7. MALDI-TOF MS spectra of compound 2.

Figure S8. ¹H-NMR spectra of compound **3**. (400 MHz, CDCl₃, 298K)

Figure S9. ¹³C-NMR spectra of compound **3**. (101 MHz, CDCl₃, 298K)

Figure S10. MALDI-TOF MS spectra of compound 3.

Figure S11. ¹H-NMR spectra of **DT-DT**. (400 MHz, CDCl₃, 298K)

Figure S12. ¹³C-NMR spectra of DT-DT. (101 MHz, CDCl₃, 298K)

Figure S13. MS spectra of **DT-DT**.

Figure S14. ¹H-NMR spectra of **BBDTB-TIPS**. (400 MHz, CDCl₃, 298K)

Figure S15. ¹³C-NMR spectra of **BBDTB-TIPS**. (151 MHz, CDCl₃, 298K)

Figure S16. MS spectra of **BBDTB-TIPS**.

Figure S17. ¹H-NMR spectra of **BBDTB-H**. (400 MHz, CDCl₃, 298K)

Figure S18. ¹³C-NMR spectra of BBDTB-H. (151 MHz, CDCl₃, 298K)

Figure S19. MS spectra of BBDTB-H.

Figure S20. ¹H-NMR spectra of **BBDTB-Br**. (400 MHz, CDCl₃, 298K)

Figure S21. MS spectra of BBDTB-Br.

3. Optical spectra

Figure S22. Absorption and emission spectra of BBDTB-H, BBDTB-TIPS and BBDTB-Br.

Figure S23. Absorption and emission spectra of DT-H.

Figure S24. Absorption and emission spectra of DT-DT.

Figure S25 UV-vis absorption spectra and emission spectra of 3, DT-DT and BBDTB-TIPS

Figure S26. Calculated UV-vis absorption spectra of DT-DT and BBDTB-TIPS.

Figure S27. Photographs of **DT-H**, **BBDTB-H**, **BBDTB-TIPS**, **BBDTB-Br** and **DT-DT** in the daylight (top), and under 365 nm UV (bottom) in CH₂Cl₂.

4. DFT Calculation

	$E_{\rm g}$	λ_{abs}	f	transition	coefficient
	[eV]	[nm]			
S_1	2.8923	428.67	2.6235	HOMO > LUMO	0.975
S ₂	3.5037	353.87	0.0053	HOMO-1 > LUMO	0.774
				HOMO-3 > LUMO	0.151
S ₃	3.5227	351.96	0.1213	HOMO-2 > LUMO	0.921
S₄	3.6175	342.73	0.0006	HOMO-3 > LUMO	0.781
~4	210170	0.2000		HOMO-1 > LUMO	0.157
S_5	3.7015	334.96	0.0002	HOMO > LUMO+1	0.927
Sc	4 1084	301 78	0 227	HOMO > LUMO+2	0.744
56		201.70	0.227	HOMO-3 > LUMO+1	0.147

Table S1 Calculated UV absorption spectroscopy data about DT-DT

				HOMO-2 > LUMO+1	0.528
S_7	4.1771	296.82	0.0012	HOMO-5 > LUMO	0.253
				HOMO-1 > LUMO+2	0.057
				HOMO-1 > LUMO+1	0.665
C	4 2001	205 10	0.0(2	HOMO-2 > LUMO+2	0.09
S_8	4.2001	295.19	0.062	HOMO-6 > LUMO	0.074
				HOMO > LUMO+2	0.069
				HOMO-5 > LUMO	0.651
S ₉	4.2598	291.06	0.0026	HOMO-2 > LUMO+1	0.162
				HOMO > LUMO+3	0.06
				HOMO-4 > LUMO	0.651
\mathbf{S}_{10}	4.2731	290.15	0.1237	HOMO-6 > LUMO	0.133
				HOMO-3 > LUMO+1	0.073

Table S2 Calculated UV absorption spectroscopy data about BBDTB-TIPS

	$E_{\rm g}$	λ_{abs}	f	transition	coefficient
	[eV]	[nm]			
S_1	3.0599	405.19	2.5245	HOMO > LUMO	0.967
S ₂	3.4524	359.12	0.1436	HOMO-1 > LUMO	0.925
S ₃	3.6472	339.94	0.0459	HOMO-2 > LUMO	0.855
				HOMO-1 > LUMO+1	0.063
S_4	3.6903	335.97	0.0049	HOMO > LUMO+1	0.57
				HOMO-3 > LUMO	0.382
				HOMO-3 > LUMO	0.509
S_5	3.7754	328.4	0.0129	HOMO > LUMO+1	0.332
				HOMO-4 > LUMO	0.07
S ₆	3.9556	313.44	0.009	HOMO-4 > LUMO	0.738

				HOMO-2 > LUMO+1	0.065
				HOMO > LUMO+1	0.061
				HOMO-3 > LUMO	0.051
				HOMO-1 > LUMO+1	0.801
S_7	4.0947	302.79	0.0205	HOMO-2 > LUMO	0.091
				HOMO> LUMO+2	0.057
	4.2520	201.52	0.5122	HOMO > LUMO+2	0.528
5_{8}	4.2329	291.53	0.5132	HOMO-3 > LUMO+1	0.3
				HOMO-2 > LUMO+1	0.622
G	4 2807	200 (4	0.007	HOMO > LUMO+3	0.104
S 9	4.2807	289.64	0.006	HOMO-4 > LUMO	0.094
				HOMO-1 > LUMO+2	0.056
S ₁₀	4.2895	289.04	0.0002	HOMO > LUMO+4	0.885
			LUMO	НОМО	
	DT-H	Ś		MÅ	
			E _{LUMO} =-1.31	E _{HOMO} =-5.38	
	BBD1B-H	.		in tallar tes	
	BBDTB-TIPS	المراجع	E _{LUMO} =-1.71	Е _{номо} =-5.05	
			ૡ૿ઌૢ૾૱ૡ૱ૢ	si corcol l'orces	
			E _{LUMO} =-1.72	Е _{номо} =-5.01	
	BBDTB-Br	•		. 402 (0 <u>5 (0</u> 2 (0) 405 4	
		Seale -	E _{LUMO} =-1.87	Е _{номо} =-5.15	a. Lai
	DT-DT		E		3
			LUMO-2.01	EHOMO 5.15	

Figure S28. Optimized geometries of **DT-H**, **BBDTB-H**, **BBDTB-TIPS**, **BBDTB-Br**, and **DT-DT** and spatial electron distributions of frontier molecular orbitals (FMOs) and their energy

levels. B3LYP/6-31G(d) (dodecyl side chains are replaced by methyl groups for simplifying DFT calculation)

5. CV Curves

Figure S29. The CV curves of **DT-H** in CH₂Cl₂.

6. Thermology Curves

Figure S30. TGA curves of **BBDTB-H** and **BBDTB-Br** measured under N_2 at 10 °C min⁻¹.

7. Single crystal structures

Compound	BBDTB-TIPS CCDC:2204238
Empirical formula	$C_{120}H_{194}S_8Si_2$
Formula weight	1949.4
Crystal system	monoclinic
Space group	P21/c
a/Å	9.0909(12)
b/Å	46.860(6)
c/Å	27.679(4)
α/	90
β/	94.973(4)
γ/	90
Volume/Å ³	11747(3)
Ζ	4
μ/mm^{-1}	1.267
F(000)	4280.0
Radiation	$GaK\alpha \ (\lambda = 1.34139)$
2Θ range for data collection/	3.28 to 99.308
Index ranges	-4≤h≤10, -53≤k≤53, -31≤l≤29
Reflections collected	73012
Independent reflections	17805
Data/restraints/parameters	17805/639/1250
Goodness-of-fit on F ²	1.132
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0860, wR_2 = 0.2588$

Table S3. Single crystal data of **BBDTB-TIPS**

Figure S31. The side view single crystal structure of the **BBDTB** skeleton.

Figure S32. The packing arrangement of **BBDTB-TIPS** along the a-axis. S–C distance is 4.076Å.

Figure S33. BBDTB-TIPS at the ambient state in rt.

8. OFET Characteristics

Compound	Substrate	T _a /°C	$\mu_{ m h, \ ave} {}^{ m a}$ / cm ² V ⁻¹ s ⁻¹	$\mu_{ m h,\ max}$ a/ $ m cm^2V^{-1}s^{-1}$	$V_{ m th}/{ m V}$	I_{on}/I_{off}
DDDTD II	OTM	25	0.0113	0.0175	-25±1	$10^{6} \sim 10^{7}$
BRD1B-H	OIMS	100	0.0221	0.0285	-32±1	10^{7}

Table S4. OFET Characteristics of the BBDTB-H

^a Determined from the following equation in the saturation region; $I_{DS} = (W/2L) Ci\mu (V_{GS} - V_{th})^2$.

1 S. Liu, W. Cao, D. Xia, J. Zhang, J. Fan, C. An, R. Fan, S. Hao, K. Lin and Y. Yang, *Dyes and Pigments*, 2021, **193**, 109506.