Electronic Supplementary Information

Journal of Materials Chemistry C

Open system synthesis of narrow-bandwidth redfluorescent carbon quantum dots with a function of multi-metal ion sensing

Rika Katakami, Kohei Sato, Akihiro Ogura, Ken-ichi Takao, Yoshiki Iso,* and Tetsuhiko Isobe*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

*Corresponding authors.

Yoshiki Iso – E-mail: iso@applc.keio.ac.jp; Tel.: +81 45 566 1558; Fax: +81 45 566 1551; orcid.org/0000-0001-7483-2828 Tetsuhiko Isobe – E-mail: isobe@applc.keio.ac.jp; Tel.: +81 45 566 1554; Fax: +81 45

566 1551; orcid.org/0000-0002-0868-5425

Fig. S1. Purification of PG-CQDs and DAR-CQDs by dialysis.

Left:White light Right:365 nm UV light

Fig. S2. Purification of PG-CQDs and DAR-CQDs by silica gel column chromatography.

Fig. S3. FT-IR spectra of PG-CQDs, PG, DAR-CQDs, DAR, and 1,2-pentanediol.

Peak	Wavelength (cm ⁻¹)					
	PG-CQDs	PG	DAR-CQDs	DAR	1,2-pentanediol	Assignment
1			3100-3600)		ν(О–Н)
2				3100–3600		$v(NH_2)$
3	2958		2959		2959	$v_{as}(CH_3)$
4	2925		2933		2934	$v_{s}(CH_{3})$
5	2872		2873		2974	$v_{s}(CH_{2})$
6	1713		1713			v(C=O)
7	1651	1622	1652	1636		ring(C=C)
8				1580		$\delta_{as}^{}(\mathrm{NH}_{3}^{+})$
9			1570			$\delta(\mathrm{NH}_2)$
10				1548		$\delta_{s}(NH_{3}^{+})$
		1506				ring
11			1505	1506		semicircle
12	1467					ring
12	1407		1468	1460		semicircle stretching
13					1457	$\delta(CH_2)$
14	1415	1418				δ(O–H)
15			1378	1370		v(C–N)
16	1160	1158	1190	1207		v(C–O)
17					1067	ν _{as} (C–C–O)
18		1008				δ(С–Н)

Table S1. Assignments of FT-IR absorption peaks of Fig. S3.

v=stretching, δ =deformation or bending, as=asymmetric, s=symmetric

Fig. S4. XPS survey spectra of PG-CQDs, PG, DAR-CQDs, and DAR.

Sample	C–OH [%]	C=C/C-C/C-N [%]
PG (Calculated)	50	50
PG (Measured)	45.9	54.1
PG-CQDs (Measured)	19.3	80.7
DAR (Calculated)	33.3	66.6
DAR (Measured)	27.3	72.7
DAR-CQDs (Measured)	1.5	89.5

Table S2. Proportions of different bonds calculated from peak fitting of the C (1s) XPS spectra of PG, PG-CQDs, DAR, and DAR-CQDs.

Calculated: obtained from molecular structure.

Measured: obtained from peak fitting of C (1s) XPS spectrum.

Fig. S5. ¹H-NMR spectra of PG-CQDs and DAR-CQDs.

Fig. S6. Simulated ¹H-NMR spectra of PG and the molecule formed by dehydration

condensation of three PG molecules.

Fig. S7. Simulated ¹H-NMR spectra of DAR and the molecule formed by dehydration

condensation of three DAR molecules.

Fig. S8. Simulated ¹H-NMR spectra of the dehydration-condensed structure of three PG

molecules bonded to three 1,2-pentanediol molecules.

Fig. S9. UV-vis spectra of ethanol dispersions of PG-CQDs and DAR-CQDs.

Fig. S10. Structural models and optimized structures of CQDs-1 and CQDs-2.

Fig. S11. UV-vis absorption spectra with oscillator strength (vertical lines) of CQDs-1 and CQDs-2 obtained by TD-DFT calculations.

Samula	НОМО	LUMO	$E_{ m H-L}$	$E_{ ext{H-L}}$
Sample	(eV)	(eV)	(eV)	(nm)
CQDs-1	-5.044	-0.487	4.557	272
CQDs-2	-4.349	-0.543	3.806	326
CQDs-3	-4.352	-0.890	3.462	358

Table S3. HOMO/LUMO energy levels and HOMO-LUMO energy gaps E_{H-L} of CQDs-1, CQDs-2, and CQDs-3.

Fig. S12. Structural models and optimized structures of CQDs-2 and CQDs-3, and their UV-vis absorption spectra with oscillator strength (vertical lines) obtained by TD-DFT calculations.

Fig. S13. Photographs of PG-CQDs and DAR-CQDs dispersions in methanol (left) and

deuterated methanol (right).

Fig. S14. UV-vis spectra of (A) PG-CQDs and (B) DAR-CQDs dispersions in methanol

and deuterated methanol.

Fig. S15. PLE and PL spectra of (A) PG-CQDs and (B) DAR-CQDs dispersions in

methanol and deuterated methanol.

Fig. S16. PL decay curves of PG-CQDs and DAR-CQDs dispersions in methanol and

deuterated methanol. λ_{ex} : PG-CQDs 405 nm, DAR-CQDs 590 nm.

Table S4. PLQYs of PG-CQD and DAR-CQD ethanol dispersions before and afterstorage for 26 months in the dark at room temperature.

Sample	Storage duration	PLQY
	(month)	
PG-CQDs	0	56
	26	53
DAR-CQDs	0	30
	26	32

Fig. S17. Changes in PL intensities of PG-CQD and DAR-CQD ethanol dispersions with the irradiation time measured under each optimum excitation wavelength.

Fig. S18. The PL spectra of PG-CQDs and DAR-CQDs aqueous dispersions in the

absence and presence of different metal ions.