
Electronic Supplementary Information (ESI) 

 

Alexandra Gruzdenko, Ingo Dierking 

Department of Physics, University of Manchester, Oxford Road, Manchester M13 9PL, 

United Kingdom 

 

 

Derivation of Equations 2 and 3 from the main text 

Fig. 1. Schematic of a cell placed between crossed polarizers in the presence of the electric field. 

The schematic of a standard sandwich cell with planar boundary conditions is shown in Fig. 1. 

To find equations for the 𝐼(𝑡) curves, one needs first to describe the relaxation of the director 

field, characterised by the deflection angle 𝜃(𝑧, 𝑡) (see Fig. 1), (i) after the application and (ii) 

after removal of the electric field. Let us first consider the case of the electric field application. 

If one ignores the director inertia and back-flow effects and considers the limit of small 

director field deformations, then the equation of the torque balance takes the following form 

1,2: 

𝑀 = 𝑀𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝑀𝑒𝑙𝑒𝑠𝑡𝑖𝑐 + 𝑀𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = 

= −𝜀0∆𝜀𝐸2 (𝜃 −
1

2
𝜃3) − 𝐾11

𝜕2𝜃(𝑧)

𝜕𝑧2
+ 𝛾1

𝜕𝜃

𝜕𝑡
= 0, (1) 
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where 𝑀𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐, 𝑀𝑒𝑙𝑎𝑠𝑡𝑖𝑐, and 𝑀𝑣𝑖𝑠𝑐𝑜𝑢𝑠 are the torques exhibited on the director by the 

electric, elastic, and viscous forces, respectively, 𝜀0 is the vacuum permittivity, ∆𝜀 is the 

dielectric anisotropy, 𝐸 is the applied electric field, 𝐾11 is the splay elastic constant, 𝛾1 is the 

rotational viscosity. 

The solution of this equation can be approximated as 𝜃 = 𝜃𝑚(𝑡) cos
𝜋𝑧

𝑑
 where 𝜃𝑚 is the 

deflection angle in the middle of the cell, and 𝑑 is the cell gap. After substituting this 

expression into the torque balance equation and solving it, one obtains: 

𝜃𝑚(𝑡) =
√

𝜃on
2

1 + [
𝜃𝑜𝑛

2

𝜃𝑜𝑓𝑓
2 − 1] 𝑒

−
2𝑡
𝜏𝑟

(2)
 

where 𝜃𝑜𝑓𝑓 is the deflection angle in the centre of the cell before applying the electric field 

(which is close to zero), 𝜃𝑜𝑛 is its equilibrium value after the field application, and the rise 

time, 𝜏𝑟 , is equal to: 

𝜏𝑟 =
𝛾1

𝜀0∆𝜀𝐸2 −
𝜋2

𝑑2 𝐾11

. (3)
 

𝜃(𝑡, 𝑧) can now be found by substituting the derived 𝜃𝑚(𝑡) into 𝜃 = 𝜃𝑚(𝑡) cos
𝜋𝑧

𝑑
. 

After the removal of the electric field, only the elastic and viscous torques are left. Under the 

same assumptions as for the previous case, the torque balance can be written as: 

𝑀 = 𝑀𝑒𝑙𝑒𝑠𝑡𝑖𝑐 + 𝑀𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = −𝐾11

𝜕2𝜃(𝑧)

𝜕𝑧2
+ 𝛾1

𝜕𝜃

𝜕𝑡
= 0. (4) 

The solution of this equation can be searched for in the form of 𝜃 = 𝜃𝑚(𝑡) cos
𝜋𝑧

𝑑
  where: 

𝜃𝑚(𝑡) = 𝜃𝑜𝑛𝑒
−

𝑡

𝜏𝑑 , (5)  

and after substituting this into the torque balance equation, one gets the expression for the 

decay time: 

𝜏𝑑 =
𝛾1𝑑

2

𝐾11𝜋2
, (6) 

and  𝜃(𝑡, 𝑧) becomes fully described. 

The intensity of light passing through the system 𝐼 can be describe as 1–3: 



𝐼~ [sin (
∆𝜑

2
)]

2

, (7) 

where ∆𝜑 =
2𝜋

𝜆
𝑛𝑒𝑑 −

2𝜋

𝜆
𝑛𝑜𝑑 is the phase difference between the extraordinary and ordinary 

waves, 𝑛𝑒 and 𝑛𝑜 are the corresponding refractive indices, and 𝜆 is the wavelength of light. 

∆𝜑 is related to the deflection angle in the middle of the cell 𝜃𝑚. Let us find this relation. 

During a relaxation process, the director field is different from the homogeneous 

configuration, and therefore, the extraordinary wave experiences different values of the 

refractive index at different z-coordinates. The total phase shift for the extraordinary wave 

can be calculated by considering the liquid crystal medium as the stack of birefringent layers 

with a fixed optic axis and thickness 𝑑𝑧: 

𝜑𝑒 =
2𝜋

𝜆
∫ 𝑛𝑒(𝑧)𝑑𝑧

𝑑
2

−
𝑑
2

. (8) 

From the geometrical consideration of the dielectric ellipsoid for a birefringent layer at a given 

z-coordinate follows the equation for 𝑛𝑒(𝑧) 1,2: 

𝑛𝑒(𝑧) =
𝑛⊥𝑛∥

√𝑛∥
2 (sin 𝜃(𝑧))2 + 𝑛⊥

2(cos 𝜃(𝑧))2
=

𝑛∥

√1 + (
𝑛∥

2 − 𝑛⊥
2

𝑛⊥
2 ) (sin 𝜃(𝑧))2

(9)

 

where 𝑛∥ and 𝑛⊥ are the refractive indices experienced by an electro-magnetic wave with the 

polarization parallel and orthogonal to the director, respectively. 

 In the limit of small 𝜃 values, this equation can be simplified to: 

𝑛𝑒(𝑧) = 𝑛∥ (1 −
1

2
(
𝑛∥

2 − 𝑛⊥
2

𝑛⊥
2

)𝜃(𝑧)2) . (10) 

Approximating 𝜃(𝑧) by 𝜃(𝑧) = 𝜃𝑚 cos
𝜋𝑧

𝑑
 and substituting 𝑛𝑒(𝑧) into the equation for 𝜑𝑒, one 

obtains: 

𝜑𝑒 =
2𝜋

𝜆
(𝑛∥𝑑 −

1

2
(
𝑛∥

2 − 𝑛⊥
2

𝑛⊥
2

)𝑛∥𝜃𝑚
2 𝑑

2
) (11) 

which under the assumption of 𝑛⊥ ≈ 𝑛∥ (which is usually justified), can be rewritten as: 



𝜑𝑒 =
2𝜋𝑑

𝜆
(𝑛∥ −

1

2
(𝑛∥ − 𝑛⊥)𝜃𝑚

2) . (12) 

Now we can write the expression for the total phase difference: 

∆𝜑 = 𝜑𝑒 − 𝜑𝑜 =
2𝜋𝑑

𝜆
(𝑛∥ −

1

2
(𝑛∥ − 𝑛⊥)𝜃𝑚

2) −
2𝜋𝑑

𝜆
𝑛⊥ =

=
2𝜋𝑑

𝜆
(𝑛∥ − 𝑛⊥) −

𝜋𝑑

𝜆
(𝑛∥ − 𝑛⊥)𝜃𝑚

2, (13)

 

or: 

∆𝜑 = ∆φ𝑜𝑓𝑓 −
𝜋𝑑

𝜆
(𝑛∥ − 𝑛⊥)𝜃𝑚

2 (14) 

where ∆φ𝑜𝑓𝑓 =
2𝜋𝑑

𝜆
(𝑛∥ − 𝑛⊥) is the phase difference in the absence of the field. 

Substituting Equation 2 and Equation 5 found earlier for 𝜃𝑚(𝑡) into the expression for ∆𝜑 and 

then substituting the result into Equation 7 for the light intensity, it is: 

𝐼~

[
 
 
 
 

sin

(

 
 ∆𝜑𝑜𝑓𝑓

2
−

1

2

𝜋𝑑

𝜆
(𝑛∥ − 𝑛⊥)

𝜃𝑜𝑛
2

1 + [
𝜃on

2

𝜃off
2 − 1] 𝑒

−
2𝑡
𝜏𝑟

)

 
 

]
 
 
 
 
2

=

=

[
 
 
 
 

sin

(

 
 ∆𝜑𝑜𝑓𝑓

2
−

(∆𝜑𝑜𝑓𝑓 − ∆𝜑𝑜𝑛)

2

1

1 + [
𝜃on

2

𝜃off
2 − 1] 𝑒

−
2𝑡
𝜏𝑟

)

 
 

]
 
 
 
 
2

(15)

 

for the intensity relaxation upon the electric field application, and 

𝐼~ [sin (
∆𝜑𝑜𝑓𝑓

2
−

1

2

𝜋𝑑

𝜆
(𝑛∥ − 𝑛⊥)𝜃𝑜𝑛

2𝑒
−

2𝑡

𝜏𝑑)]
2

= [sin (
∆𝜑𝑜𝑓𝑓

2
−

(∆𝜑𝑜𝑓𝑓−∆𝜑𝑜𝑛)

2
𝑒

−
2𝑡

𝜏𝑑)]
2

 (16)  

for the intensity relaxation upon the electric field removal where ∆𝜑𝑜𝑛 = ∆φ𝑜𝑓𝑓 −

𝜋𝑑

𝜆
(𝑛∥ − 𝑛⊥)𝜃𝑜𝑛

2 is the equilibrium phase difference in the presence of the field. By fitting 

the measured 𝐼(𝑡) curves with the derived expressions, the response times could be found. 

Fitting was applied to the beginning of the relaxation curve in the case of the electric filed 

application and to the final part of the curve in the case of the electric filed removal since the 

small angle approximation used to derive the formulas is valid only for those stages of the 

relaxation.  
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