Supplementary

Effects of codoping on Tin Selenide nanomaterial to enhance thermoelectric performance above ambient temperature range

Pinaki Mandal¹, Soumyajit Maitra², Uday Kumar Ghorui³, Prasenjit Chakraborty¹, Bibhutosh Adhikary³ and Dipali Banerjee^{1*}

¹Department of Physics, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah -711103, West Bengal, India

²School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India

³Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah-711103, West Bengal, India

*Email id: 1dipalibanerjeebesu@gmail.com

Williamson-Hall plot

Average crystallite size (D) and lattice strain (ɛ) were calculated using Williamson-Hall plot

(equation 1),

where β is full width at half maxima (FWHM), K is the shape factor (0.94), and λ is the wavelength, respectively

Figure S1 Williamson-Hall plots for pristine (a) SnSe and (b) SSCA-7-2

XPS Analysis

Figure S2 is the survey XPS spectrum of Cu/Ag codoped SnSe sample (SSCA-7-2). It reveals the presence of Cu 2p, Sn 3d, Ag 3d and Se 3d in codoped sample. C and O may come from ethylelediamine and small amount of tin oxide which may form during synthesis.

Figure S2 XPS survey scan for codoped SSCA-7-2

UV-Vis Analysis

UV-Vis spectra (shown in figure S3) were taken for the samples pure SnSe, Cu doped SnSe (SSCA-7-0) and Cu, Ag codoped SnSe (SSCA-7-2). Corresponding optical bandgaps (Eg) were calculated using Tauc relation¹ (equation 2)

Where α , h, v and A₀ are absorption coefficient, plank constant, frequency of radiation and constant respectively. Value of n depends on type of transition like $\frac{1}{2}$, 2, 1/3 or 3 for allowed

direct, allowed indirect, forbidden direct, forbidden indirect transitions respectively. Obtained bandgap values are 1.05, 0.91 and 0.69 eV for pure SnSe, SSCA-7-0 and SSCA-7-2 respectively. Hence optical bandgap decreases for doped and codoped samples which is also observed in DFT results.

Figure S3 (a) UV-Vis spectra; (b) Tauc plot of pure SnSe, SSCA-7-0 and SSCA-7-2 respectively

Transport parameters

Carrier concentration has been calculated using Mott–Jones equation 3 (for $M_e=0.9$). Obtained values of carrier concentration and mobility are tabulated in Table S1 at room temperature along with recent similar works. Temperature variation of mobility for SSCA-7-2 has been shown in Figure S4

$$S = \frac{8\pi^2 k_B}{3eh^2} m_{DOS}^* \frac{\pi}{T(3n)^{2/3}} \dots 3$$

Sample	n 10 ¹⁸ cm ⁻³	n in 10 ¹⁸ cm ⁻³	Mobility (Mobility (cm ² /VS)	Electrical	Referen
	from Hall	(Mott-Jones)	cm ² /VS)	Calculated from	conductivity	ce
	measurement	(m*=0.9me)	Hall measurement	Seebeck coefficint	S/cm	
SnSe		8.28		0.0376	0.05	Present
		5.32 (0.67 m _e)				work
SSC-3		21.9		0.0872	0.3	,,
		15.05(m*=0.7me)				
		9.38 (m*=0.51me)				
SSC-7		32 22.15(m*=0.7me)		0.3019	1.54	,,
		13.77 (m*=0.51me)				
SSCA-7-1		48.9		0.5545	4.34	,,
		16.15 (m*=0.43me)				
SSCA-7-2		41.7		0.5261	3.51	,,
		13.79 (m*=0.43me)				
SSCA-7-3		37.9		0.5011	3.04	,,
		12.51 (m*=0.43me)				
SnSe	0.18	6.78	160	4.3	4.7	[2]
SnSe 11.8 % Cu	3.44	13.71	57.2	14.12	31.6	
SnSe	0.5	27.53	139	2.52	10.12	[³]
SnSe 5% Ag	9	56.23	13	2.11	12.60	
SnSe	0.15	8.9 (S=420µV/K)	56	0.32	0.46	[4]
SnSe 1% Zn	0.2	5.4(S=585 μV/K)	30	0.57	0.50	
SnSe	3.8	41.7(S=150 μV/K)	0.22	0.007	0.05	[5]
Sn _{0.94} Pb _{0.01} Se _{0.96} Te _{0.04}	3.98	42.1(S=149 μV/K)	0.175	0.029	0.2	
SnSe	0.25	6.8 (S=502 μV/K)	28		52	[6]
Na0.01(Sn1-0.05Pb0.05)	43.1	41 (S=150 μV/K)	5.7	6.2	58	
0.99Se						

Table S1 Carrier concentration and mobility calculated from Seebeck coefficient and reported values

(from Hall Effect) at room temperature

Computational Details

Figure S5 (a) ELF mapping of Cu-SnSe (b) EDD mapping of Cu-SnSe (c) Geometry optimized structure of SnSe supercell

DFT calculations were carried out using Quantum Expresso code using a Monkhorst Pack Scheme $9 \times 9 \times 3$ k-point grid⁷. Spin-polarized DFT calculations were carried out with GGA exchange-correlationnd PBE type Ultrasoft pseudopotentials and Koelling-Harmon relativistic treatment^{8,9}. DFT-D2 correction using Grimme Parameters for interlayer VdW interactions was taken into consideration since SnSe is a layered material. SCF cutoff was set at 1e-6 eV with a density mixing electronic minimizer scheme and a Pulay-type charge mixing scheme^{9,10}. Geometry optimization was carried out using an LBFGS algorithm with energy cutoff set at 1e-6 eV, max force at 0.005 eV/Å, max stress at 0.01 GPa, and max displacement at 1e-5 Å^{11,12} Phonon density of states and phonon dispersions were calculated using the Finite Displacement method for a single supercell, with convergence tolerance of 1e-6 eV and 0.005 1/Å dispersion grid separation⁷.

References

 Mandal, P.; Maitra, S.; Chatterjee, M. J.; Chattopadhyaya, M.; Kargupta, K.; Banerjee, D. Polypyrrole-Bismuth Selenide (PPY-Bi2Se3) Composite-Thermoelectric Characterization and Effect of Nickel Doping. *Synthetic Metals*. 2022. https://doi.org/10.1016/j.synthmet.2022.117119.

- Shi, X.; Zheng, K.; Hong, M.; Liu, W.; Moshwan, R.; Wang, Y.; Qu, X.; Chen, Z. G.; Zou, J. Boosting the Thermoelectric Performance of P-Type Heavily Cu-Doped Polycrystalline SnSe: Via Inducing Intensive Crystal Imperfections and Defect Phonon Scattering. *Chem. Sci.* 2018, 9 (37), 7376–7389. https://doi.org/10.1039/c8sc02397b.
- (3) Chien, C. H.; Chang, C. C.; Chen, C. L.; Tseng, C. M.; Wu, Y. R.; Wu, M. K.; Lee, C. H.; Chen, Y. Y. Facile Chemical Synthesis and Enhanced Thermoelectric Properties of Ag Doped SnSe Nanocrystals. *RSC Adv.* **2017**, *7* (54), 34300–34306. https://doi.org/10.1039/c7ra05819e.
- (4) Li, J. C.; Li, D.; Qin, X. Y.; Zhang, J. Enhanced Thermoelectric Performance of P-Type SnSe Doped with Zn. *Scr. Mater.* **2017**, *126*, 6–10. https://doi.org/10.1016/j.scriptamat.2016.08.009.
- (5) Li, F.; Bo, L.; Zhang, R.; Liu, S.; Zhu, J.; Zuo, M.; Zhao, D. Enhanced Thermoelectric Properties of Te Doped Polycrystalline Sn0.94 Pb0.01 Se. *Nanomaterials* 2022, *12* (9), 1–11. https://doi.org/10.3390/nano12091575.
- (6) Lee, Y. K.; Ahn, K.; Cha, J.; Zhou, C.; Kim, H. S.; Choi, G.; Chae, S. I.; Park, J. H.; Cho, S. P.; Park, S. H.; Sung, Y. E.; Lee, W. B.; Hyeon, T.; Chung, I. Enhancing P-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. J. Am. Chem. Soc. 2017, 139 (31), 10887–10896. https://doi.org/10.1021/jacs.7b05881.
- (7) Opoku, F.; Govender, K. K.; Gertina, C.; Elizabeth, C.; Govender, P. P. (M = Zn and Cd) Heterostructures for Hydrogen Production : Insights from a DFT + U Study †. *Phys. Chem. Chem. Phys* 2017, *19*, 28401–28413. https://doi.org/10.1039/c7cp04440b.
- (8) Natarajan, K.; Chandiramouli, R. Exploring the Structural Stability and Electronic Properties of VS2 Nanostructures – a DFT Study. J. Nano- Electron. Phys. 2018, 9 (February), 3–7. https://doi.org/10.21272/jnep.9(3).03008.
- (9) Xu, Q.; Yang, G. M.; Zheng, W. T. DFT Calculation for Stability and Quantum Capacitance of MoS2 Monolayer-Based Electrode Materials. *Mater. Today Commun.* 2020, 22, 100772– 100779. https://doi.org/10.1016/j.mtcomm.2019.100772.
- (10) Maitra, S.; Pal, S.; Maitra, T.; Halder, S.; Roy, S. Solvothermal Etching-Assisted Phase and Morphology Tailoring in Highly Porous CuFe2O4Nanoflake Photocathodes for Solar Water Splitting. *Energy and Fuels* **2021**, *35* (17), 14087–14100. https://doi.org/10.1021/acs.energyfuels.1c02090.
- (11) Ghosh, D.; Roy, K.; Maitra, S.; Kumar, P. Unravelling Rashba-Dresselhaus Splitting Assisted Magneto-Photoelectrochemical Water Splitting in Asymmetric MoSSe-GaN Heterostructures. *J. Phys. Chem. Lett.* **2022**, *13* (5), 1234–1240. https://doi.org/10.1021/acs.jpclett.1c04153.
- (12) Roy, K.; Maitra, S.; Ghosh, D.; Kumar, P.; Devi, P. 2D-Heterostructure Assisted Activation of MoS2 Basal Plane for Enhanced Photoelectrochemical Hydrogen Evolution Reaction. *Chem. Eng. J.* **2022**, *435* (2), 134963. https://doi.org/https://doi.org/10.1016/j.cej.2022.134963.