Electronic supplementary information

Interface microstructure and band alignment of hexagonal boron nitride/diamond heterojunction

Jingren Chen,^{ab} Ran Tao,^c Gaokai Wang,^{ab} Zhigang Yin,^{ab} Libin Zeng,^{ab} Xinxin Yu,^c Siyu Zhang,^{ab} Yun Wu,*^c Zhonghui Li,^c Xingwang Zhang*^{ab}

^a Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^c CETC Key Laboratory of Carbon-based Electronics, Nanjing Electronic Devices Institute, Nanjing 210016, P. R. China

* Corresponding author. E-mail: wuyun012@126.com, xwzhang@semi.ac.cn

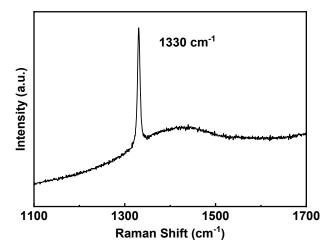
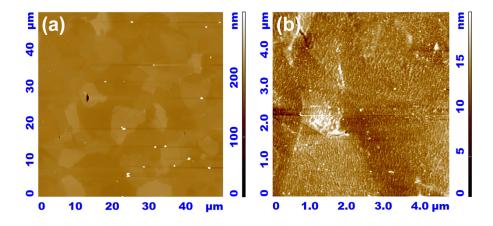
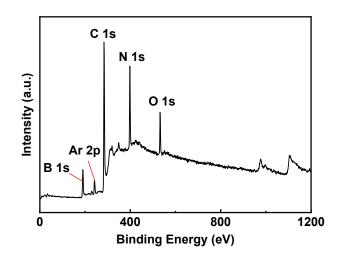
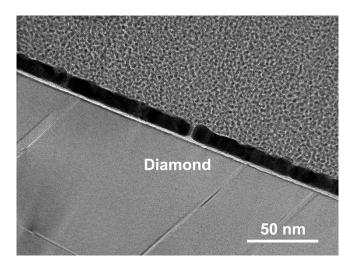
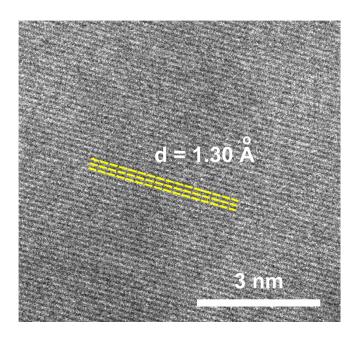


Fig. S1 Raman spectrum of the CVD-grown polycrystalline diamond substrate.


Fig. S2 AFM images of diamond substrate with a scanning area of (a) 50 μ m × 50 μ m and (b) 5 μ m × 5 μ m. The RMS roughness is determined to be about 0.90 nm within a 5 μ m × 5 μ m region.

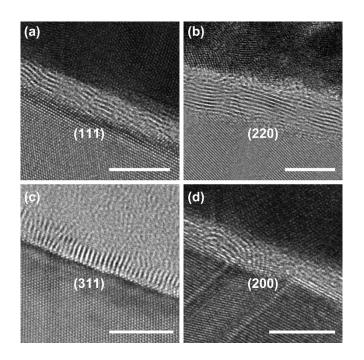

Fig. S3 Full XPS spectrum of the h-BN layer grown on diamond. Besides the B and N constituents from the h-BN layer, Ar, C, and O signals can also be detected. The presence of Ar is attributed to the incorporation from the growth atmosphere, while C and O originates from the surface contaminants and adsorption as well as the diamond substrate.

Fig. S4 A typical low-magnification TEM image of h-BN/diamond heterojunction, showing a very uniform thickness of the h-BN layer (the brightest thin layer).

Fig. S5 HRTEM image of diamond substrate, showing a lattice fringe of diamond (220) planes with a lattice spacing of 1.30 Å.

Fig. S6 HRTEM images of h-BN/diamond heterointerface focused on different crystal facets of diamond substrate. The scale bars denote 5 nm in these images.

Calculation of surface energy

We deduced the surface energy using the following equation:

$$E_{(hkl)}^{S} = \frac{\sigma}{2} \times N \times d_{(hkl)} \times \rho$$

where $E_{(hkl)}^{S}$ is the surface energy of the sample terminated by specific facet, σ is the bond energy of specific atom, N is the quantity of dangling bonds for each atom at the specific crystal plane, $d_{(hkl)}$ is the d-spacing of the crystal plane and the ρ is the volume density of atom of the sample.

The value of *N* can be determined from the structure models as shown in Figure S6. Such as for the (111) plane of diamond, half carbon atoms bond with the upper-layer atoms and the other part bond with the down-layer atoms. As a result, only half carbon atoms have one dangling bond represented as $1 \times 1/2 + 0 \times 1/2$.

The other computational details and the results are shown in Table S1.

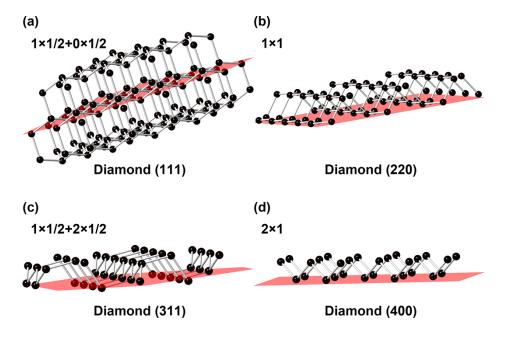
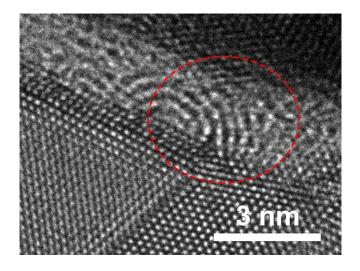



Fig. S7 Structure models of diamond terminated by specific facet (red plane).

Fig. S8 HRTEM images of h-BN/diamond heterostructure focused on the grain boundary region of diamond substrate.

Surface	σ [eV]	Ν	d _(hkl) [Å]	ρ[Å-3]	$E_{(hkl)}^{S} [eV \text{ Å}^{-2}]$
Diamond (111)	3.78	1×1/2+0×1/2	2.06	0.18	0.35
Diamond (220)	3.78	1×1	1.26	0.18	0.43
Diamond (311)	3.78	$2 \times 1/2 + 1 \times 1/2$	1.07	0.18	0.55
Diamond (400)	3.78	2×1	0.89	0.18	0.61
h-BN (1100)	3.98	1×1/2+0×1/2	2.16	0.11	0.24

 Table S1. Computational details of the surface energy.