Supporting Information for

Bubble-Propelled Micro-/Nanomotors of Variable Size by Regulating Surface Microstructure of Partial Coating Shell Pt

Jiaxin Li¹, Xiangxiang Zhai¹, Zili Yang¹, Ziye Pei¹, Ming Luo^{1*}, and Jianguo Guan^{1,2*}

 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

2. Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China.

*Address correspondence to luoming 2016@whut.edu.cn (M. Luo), guanjg@whut.edu.cn (J. Guan)

Table of Contents

Figure S1. SEM and TEM images of 1-µm PS microspheres.

Figure S2. SEM and TEM images of 1-µm PS@PDA core-shell microstructures.

Figure S3. Fourier transform infrared (FTIR) spectra of PS@PDA core-shell microstructures (up) and PS microspheres (down).

Figure S4. SEM and TEM images of 1-µm PS-PS@PDA eccentric particles.

Figure S5. SEM and TEM images of 500-nm PS microspheres.

Figure S6. SEM and TEM images of 500-nm PS@PDA core-shell microstructures.

Figure S7. SEM and TEM images of 500-nm PS-PS@PDA eccentric particles.

Figure S8. SEM and TEM images of 500-nm PEMNMs.

Figure S9. SEM and TEM images of 200-nm PS microspheres.

Figure S10. SEM and TEM images of 200-nm PS@PDA core-shell microstructures.

Figure S11. SEM and TEM images of 200-nm PS-PS@PDA eccentric particles.

Figure S12. SEM and TEM images of 200-nm PEMNMs.

Figure S13. The time-lapse images show the interaction behavior between $1-\mu m$ PEMNM and tracer particles in H₂O₂ aqueous solutions.

Figure S14. Differentiation of the propulsion mechanism of PEMNM.

Figure S15. The motion behavior of 1-µm PEMNM in H₂O₂ aqueous solution containing different NaCl concentration.

Figure S16. The migration speed of 1- μ m PEMNM in H₂O₂ aqueous solution (10% v/v).

Figure S17. Typical trajectories of 1-µm PEMNMs with low surface coverage of PtNPs in H₂O₂ aqueous solutions.

Figure S18. The Pt content of 1-µm PEMNMs with different surface coverage of PtNPs.

Figure S19. Amount of oxygen produced by 1- μ m PEMNMs with different surface coverage of Pt nanoparticles immersed in H₂O₂ aqueous solutions.

Figure S20. Typical trajectories of 1-µm PEMNMs with high surface coverage of PtNPs in H₂O₂ aqueous solutions.

Figure S21. Typical trajectories of 500-nm PEMNMs in 15% H₂O₂ aqueous solutions.

Figure S22. Typical trajectories of 200-nm PEMNMs in 20% H₂O₂ aqueous solutions.

2. Supporting tables S23

Table S1. Summary of the bubble-propelled MNMs

3. Supporting videos

Video S1. Motion behavior of the 1-µm PEMNMs in H₂O₂ aqueous solutions (3% v/v)

- Video S2. Motion behavior of the 1- μ m PEMNMs in H₂O₂ aqueous solutions (10% v/v)
- Video S3. The interaction behavior between 1- μm PEMNM and tracer particles in 3% v/v H_2O_2 aqueous solutions.
- Video S4. Motion behavior of the 500-nm PEMNMs in H_2O_2 aqueous solutions (15% v/v)
- Video S5. Motion behavior of the 200-nm PEMNMs in H_2O_2 aqueous solutions (20% v/v)

Figure S1. SEM (a) and TEM (b) images of 1- μm PS microspheres. Scale bars: 1 $\mu m.$

Figure S2. SEM (a) and TEM (b) images of 1- μ m PS@PDA core-shell microstructures. Scale bars: 1 μ m.

Figure S3. Fourier transform infrared (FTIR) spectra of PS spheres and PS@PDA core-shell microstructures.

Figure S4. SEM (a) and TEM (b) images of 1-µm PS–PS@PDA eccentric particles. Scale bars: 1 µm.

Figure S5. SEM (a) and TEM (b) images of 500-nm PS microspheres. Scale bars: 500 nm.

Figure S6. SEM (a) and TEM (b) images of 500-nm PS@PDA core-shell nanostructures. Scale bars: 500 nm.

Figure S7. SEM (a) and TEM (b) images of 500-nm PS-PS@PDA eccentric particles Scale bars: 500 nm.

Figure S8. SEM (a) and TEM (b) images of 500-nm PEMNM structures. Scale bars: 500 nm.

Figure S9. SEM (a) and TEM (b) images of 200-nm PS microspheres. Scale bars: 200 nm.

Figure S10. SEM (a) and TEM (b) images of 200-nm PS@PDA core-shell microstructures. Scale bars: 200 nm.

Figure S11. SEM (a) and TEM (b) images of 200-µm PS-PS@PDA eccentric particles. Scale bars: 200 nm.

Figure S12. SEM (a) and TEM (b) images of 200-nm PEMNM structures. Scale bars: 200 nm.

Figure S13. Verification of the propulsion mechanism of 1- μ m PEMNM by the tracer particle-assisted experiments. The time-lapse images showed the interaction behavior between 1- μ m PEMNM and tracer particles (500-nm SiO₂ nanoparticles) in H₂O₂ aqueous solutions (3% v/v). The images were obtained from the Video S3.

Figure S14. Differentiation of the propulsion mechanism of PEMNM by the method reported by Wang and co-workers. The time-lapse images show the interaction behavior between 1- μ m PEMNM in H₂O₂ aqueous solutions (3% v/v).

Figure S15. The motion behavior of 1- μ m PEMNM when immersed in H₂O₂ aqueous solution (10% v/v) containing different NaCl concentration.

Figure S16. The migration speed of 1- μ m PEMNM within 50 minutes when immersed in H₂O₂ aqueous solution (10% v/v).

Figure S17. Typical trajectories of 1- μ m PEMNMs with low surface coverage of PtNPs in H₂O₂ aqueous solution (6% v/v).

Figure S18. The Pt content of 1- μ m PEMNMs with different surface coverage of PtNPs. The number of motor is 2.28 \times 10⁸.

Figure S19. Amount of oxygen produced by 1- μ m PEMNMs with different surface coverage of Pt nanoparticles immersed in H₂O₂ aqueous solutions.

Experimental section: In briefly, the same amount of 1- μ m PEMNMs with different surface coverage of Pt nanoparticles was added into 5 mL of H₂O₂ aqueous solution. The produced oxygen was measured by a dissolved oxygen test instrument.

Figure S20. Typical trajectories of 1- μ m PEMNMs with high surface coverage of PtNPs in H₂O₂ aqueous solution (10% v/v).

Figure S21. Typical trajectories of 500-nm PEMNMs in 15% v/v H2O2 aqueous solution. The images were obtained from the

Video S4.

Figure S22. Typical trajectories of 200-nm PEMNMs in 20% v/v H₂O₂ aqueous solution. The images were obtained from the

Video S5.

 Table S1. Summary of the bubble-propelled MNMs.

Micro-/Nanomotors	Morpholo	Size	Fuel	Fabrication Technique	Application	Reference
Magnesium (Mg)/Platinum (Pt) Janus Micromotors	Janus Particles	~20 µm (Diameter) (SEM)	Water	Physical Vapor Deposition	-	Angew. Chem. Int. Ed., 2013 , 52, 7208–7212.
Hydrogen-Powered Microswimmers (HPMs)	Janus Particles	~24 μm (Diameter) (SEM)	Water	Physical Vapor Deposition	ROS and inflammation scavenging	Adv. Funct. Mater., 2021 , 31, 2009475.
Mg-Based Micromotors	Janus Particles	$23 \pm 5 \ \mu m$ (Diameter) (SEM)	Water	Physical Vapor Deposition	Therapy of rheumatoid arthritis	Nano Lett., 2021 , 21, 1982–1991.
Enteric Mg Micromotors	Tubular	~5 μm (Diameter) ~23.2 μm (Length) (SEM)	Water	Template Electrodeposition	Site-specific gastrointestinal delivery	ACS Nano, 2016 , 10, 9536–9542.
Aluminum (Al)- Gallium (Ga)/Titanium (Ti) Micromotor	Janus Particles	~ 20 µm (Diameter) (SEM)	Water	Physical Vapor Deposition	-	<i>ACS Nano</i> , 2012 , 6, 8432–8438.
Multi-Response Biocompatible Janus Micromotor	Janus Particles	~25 μm (Diameter) (SEM) 20~25 μm	Water	Physical Vapor Deposition	Medical imaging	Appl. Mater. Today., 2021 , 23, 101026.
Mg-TiO ₂ micromotor	Janus Particles	(Diameter) (SEM)	Water	Physical Vapor Deposition	-	<i>Research</i> , 2020 , <i>2020</i> , 7823615.
Zinc (Zn) / Iron (Fe) Janus Micromotors	Janus Particles	~ 20 μm (Diameter) (SEM) ~0.35 μm (front	Acid	Physical Vapor Deposition	-	ACS Nano, 2016 , 10, 10389–10396.
Polyaniline (PANI)/Zn Micromotors	Tubular	inner Diameter) ~1.2 μm (outer layer Diameter) ~10 μm (Length)	Acid	Template Electrodeposition	Pick-up, transport, and release of cargoes	J. Am. Chem.Soc., 2012 , 134, 897–900.
Zerovalent-Iron (ZVI)/Pt Janus Micromotors	Janus Particles	(SEM) ~60 μm (Diameter) (SEM)	H_2O_2	Physical Vapor Deposition	Removal of 2,4- dinitrotoluene and Rhodamine 6G	Small, 2015 , 11, 499–506.
MOF-Integrated Photocatalytic Micromotors.	Janus Particles	200 μm (Diameter) (SEM)	H ₂ O ₂	Colloidal Chemistry Method	Degradation of organic contaminant Rhodamine B	ACS Appl. Mater. Interfaces, 2020 , 12, 35120–35131.
Pt Micro/Nanomotors	Tubular	0.23 μm to 4.74 μm (Diameter) 2.25 μm to 17.25 μm (Length) (SEM) 10 μm	H ₂ O ₂	Template Electrodeposition	-	ACS Nano, 2016 , 10, 5041–5050.
Tubular Catalytic Micromotors	Tubular	(Diameter) 50 μm (Length) (SEM)	H ₂ O ₂	Template Electrodeposition	-	Small, 2021 , 17, 2006449

Poly(3,4- ethylenedioxythioph ene) (PEDOT)/ Manganese Dioxide (MnO ₂) Micromotor	Tubular	5 μm (Diameter) 15 μm (Length) (SEM) 23 ± 4.4	H ₂ O ₂	Template Electrodeposition	-	Small, 2020 , 2003678.
Pot-like Structure Pt Motors.	Pot-like	μm (Diameter) (SEM)	H_2O_2	Physical Vapor Deposition/ Colloidal Chemistry Method	-	Nanoscale, 2014 , 6, 11177–11180.
Pt Micromotors	Pot-like (Rough)	(BLW)~3 μm(Diameter) (SEM)	H_2O_2	Physical Vapor Deposition/ Colloidal Chemistry Method	-	ACS Nano, 2016 , 10, 8751–8759.
Carbonaceous Nanoflask (CNF) Motor	Flask-like	550~700 nm (Diameter) (SEM)	H_2O_2	Colloidal Chemistry Method	-	Langmuir, 2020 , 36, 7039–7045.
Pt-Polystyrene (PS) Micromotors	Dimer	~1 μm (Diameter) (SEM)	H_2O_2	Colloidal Chemistry Method	-	<i>Langmuir</i> , 2014 , <i>30</i> , 3477–3486.
PS-PS@Polydopami ne (PDA)@Pt Micro-/Nanomotors	Dimer	~0.2 µm to 1 µm (Diameter) (SEM and TEM)	H_2O_2	Colloidal Chemistry Method	-	This work
Silver (Ag) Catalytic Micromotors	Janus Particles	~20 µm (Diameter) (SEM)	H_2O_2	Physical Vapor Deposition/ Colloidal Chemistry Method	-	J. Am. Chem. Soc., 2014 , 136, 2719–2722.
Fe-MnO ₂ Core-shell Micromotors	Particles (Rough)	~2 µm (Diameter) (SEM)	H_2O_2	Colloidal Chemistry Method	Decontamination of antibiotics	<i>Appl. Catal. B.</i> , 2022 , <i>314</i> , 121484.
Cobalt-Ferrite (CFO) Micromotor	Particles	~100 µm (Diameter) (SEM)	H_2O_2	Colloidal Chemistry Method	Removal of malachite green in water	Small, 2022 , 18, 2107619.
Hyperbranched Polyamide/L- arginine (HLA _n) Micro-/Nanomotors	Particles	~120 nm to Several Micromet ers (Diameter) (SEM and TEM)	H ₂ O ₂	Colloidal Chemistry Method	-	Nat. Commun., 2019 , 10, 966.