Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Size- and facet-dependent photoelectrochemical properties of Cu₂O crystals

Hsueh-Heng Ma and Michael H. Huang*

Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 300044, Taiwan

Synthesis of size-tunable Cu₂O cubes

To make size-tunable Cu₂O cubes, SDS powder was first dissolved in deionized water, and the solution was sonicated for 10 min. CuCl₂ solution was then injected under stirring in a water bath set at 31 °C. After stirring for 25 min, NaOH solution was introduced. Subsequently, after stirring for 0 sec (immediately), 10 sec, and 20 sec, NH₂OH·HCl solution was injected to make *S*-cubes, *M*-cubes, and *L*-cubes, respectively. The mixture was stirred for 20 sec and aged for 50 min to obtain the particles. The precipitate was collected by centrifugation at 6500 rpm and washed with water by repeated centrifugation at 9000 rpm for three times to remove the SDS surfactant. Finally, the particles were preserved in 99% ethanol. The exact reagent concentrations and volumes used are listed in Table S1.

	SDS	DI water	0.1 M CuCl ₂	1 M NaOH	0.2 M NH ₂ OH [·] HCl		
	(g)	(mL)	(mL)	(mL)	(mL)		
Cubes	0.348	38.2	0.4	0.8	0.6		
CO	0.348	37.4	0.4	0.8	1.4		
Oct	0.348	26.6	0.8	0.8	2.6		
					0.1 M NH ₂ OH [·] HCl		
RD	0.348	27.68	2	0.72	(mL)		
					9.6		

Table S1 Reagent concentrations and volumes used to make various Cu₂O crystals.

Synthesis of Cu₂O octahedra and rhombic dodecahedra

The synthesis procedure for Cu₂O octahedra and rhombic dodecahedra is slightly different from that of cubes. The SDS solution was stirred for 5 min in a 31 °C water bath. Then CuCl₂ solution was injected under stirring. After stirring for 10 min and 25 min respectively for octahedra and rhombic dodecahedra, NaOH solution was introduced. After stirring for 4 sec, NH₂OH·HCl solution was injected. For octahedra, the mixture was stirred for 10 sec and aged for 25 min. For rhombic dodecahedra, the mixture was stirred for 20 sec and aged for 50 min. The precipitate was collected by centrifugation at 6500 rpm and washed with water by centrifugation at 9000 rpm for three times. Finally, the particles were preserved in 99% ethanol.

Synthesis of Cu₂O cuboctahedra

The synthesis process for Cu₂O cuboctahedra is similar to that of Cu₂O cubes. The SDS solution was sonicated for 10 min. Next, CuCl₂ solution was injected under stirring in a 31 °C water bath. After stirring for 25 min, NaOH solution was introduced. After stirring for 15 sec, NH₂OH·HCl solution was injected. The mixture was stirred for 20 sec and aged for 50 min. The precipitate was collected by centrifugation at 6500 rpm and washed with water by centrifugation at 9000 rpm for three times. Finally, the particles were preserved in 99% ethanol.

Fig. S1 (a–c) SEM images of the synthesized Cu₂O cubes with different sizes. (d–f) Size distribution histograms of the Cu₂O cubes.

Fig. S2 SEM images of the synthesized Cu_2O (a) cuboctahedra, (b) octahedra, and (c) rhombic dodecahedra and (d–f) their size distribution histograms.

Fig. S3 XRD patterns of different Cu₂O crystals.

Fig. S4 Illustration of the process to make Cu₂O/ITO photocathodes and photographs of the prepared photocathodes using different Cu₂O crystals.

Fig. S5 Determination of the particle volumes and a plot of the particle sizes and their band gaps.

Fig. S6 Photographs of (a) Cu_2O cube dispersions and (b) the mixed powder with large and small cubes. (c) Diffuse reflectance spectra of Cu_2O cubes.

Fig. S7 CV curves for electrochemically active surface area determination.

Fig. S8 SEM images of Cu_2O (a) small cubes, (b) medium cubes, (c) large cubes, (d) cuboctahedra, (e) octahedra, and (f) rhombic dodecahedra after photoelectrochemical measurements.

Fig. S9 XRD patterns of Cu₂O crystals after the photoelectrochemical measurements.

Fig. S10 Mott–Schottky plots of Cu₂O (a) small cubes, (b) medium cubes, (c) large cubes, (d) cuboctahedra, (e) octahedra, and (f) rhombic dodecahedra. The slope and x-axis intercept of each line are provided.

Equations	Parameters	S-cubes	<i>M</i> -cubes	L-cubes	со	Oct	RD
$k_B T$	E_0 (V vs. RHE)	0.94	0.79	0.69	0.89	0.73	0.79
$E_{fb} = E_0 + \frac{1}{e}$	$E_{\rm fb}$ (V vs. RHE)	0.96	0.81	0.72	0.92	0.76	0.81
- 2 N -	Slope ($10^{14} \text{ F}^{-2} \text{cm}^4 \text{V}^{-1}$)	-3.71	-2.46	-4.44	-3.71	-3.23	-3.22
$N_A = \frac{1}{slope \times e\varepsilon\varepsilon_0}$	$N_{\rm A}$ (10 ¹⁶ cm ⁻³)	5.01	7.54	4.19	5.01	5.75	5.77
$E_{V} = E_{ch} + \frac{k_B T N_V}{ln - ln}$	$N_{\rm V} = \frac{2(2\pi m \times k_{\rm B}T)^{3/2}}{h^3}$	$1.11 \times 10^{19} cm^{-3}$					
$V V D e N_A$	E_V (V vs. RHE)	1.10	0.94	0.86	1.06	0.89	0.95
$F - F \perp F$	E_g (eV)	2.42	2.23	2.01	2.15	2.30	2.22
$L_C - L_V + L_g$	E_C (V vs. RHE)	-1.32	-1.31	-1.15	-1.09	-1.41	-1.27

Table S2 Calculations for the determination of conduction band and valence band energies.

Fig. S11 Chopped-light open-circuit potential measurements of Cu₂O (a) small cubes, (b) medium cubes, (c) large cubes, (d) cuboctahedra, (e) octahedra, and (f) rhombic dodecahedra. Standard deviation of small cubes, medium cubes, and rhombic dodecahedra is 0.001 V. Standard deviation of large cubes and octahedra is 0.002 V. Standard deviation of cuboctahedra is 0.003 V.

Equations	Parameters	S-cubes	<i>M</i> -cubes	<i>L</i> -cubes	СО	Oct	RD
	E_{OC}^{light} (V vs. RHE)	0.678	0.694	0.697	0.700	0.662	0.643
$E_{mh,OC} = E_{OC}^{light} - E_{OC}^{dark}$	E_{OC}^{dark} (V vs. RHE) $\textcircled{igoplus}$	0.676	0.691	0.691	0.696	0.662	0.642
	$E_{ph,OC}$ (V)	0.002	0.003	0.006	0.004	-	0.001
E E Edark	$E_{ m fb}$ (V vs. RHE)	0.96	0.81	0.72	0.92	0.76	0.81
$E_{bi} = E_{fb} - E_{OC}$	E_{bi} (V)	0.28	0.12	0.03	0.22	0.10	0.17

Table S3 Photovoltages and build-in potentials of different Cu₂O crystals.

Fig. S12 Nyquist plots from EIS measurements of Cu₂O crystals (a) in the dark and (b) under back-side illumination.

Fig. S13 SEM images of (a-c, g-i) the top views and (d-f, j-l) cross-sectional views of Cu₂O/ITO photocathodes.

Fig. S14 (a) Setup for the photoelectrochemical experiments. (b) Photograph of the reaction cell. (c, d) Drawings of the (c) front-side and (d) back-side light illumination directions.