Supplementary Information

CVD-deposited Cu_2O thin-films with record Hall hole mobility of 263 cm²/Vs and field-effect mobility of 0.99 cm²/Vs

Fig S1 (a) SEM and (b) processed SEM images of Cu_2O film deposited on SiO₂ at ~100 nm/10 min

Fig S2 Cu₂O depositions on (a) SiO₂ (b) AI_2O_3 (c) HfO₂ and (d) Ta₂O₅ at different temperatures (350°C, 400°C, 500°C, and 600°C), for different durations (5 min, 15 min and 30 min).

Fig S3 Nucleation density vs Temperature & duration: (a) SiO_2 (b) AI_2O_3 (c) HfO_2 and (d) Ta_2O_5

Fig S4 Coverage vs duration, at different temperatures (a) SiO₂ (b) Al₂O₃ (c) HfO₂ and (d) Ta₂O₅

Fig S6: C–V curves for Cu₂O MOS capacitors with different dielectrics, swept from -5V to 5V with the frequency of 100 KHz to observe hysteresis of (a) MOSCAP 1 with SiO₂, (b) MOSCAP 2 with Al_2O_3 , (c) MOSCAP 3 with HfO₂ and (d) MOSCAP 4 with Ta_2O_5

Fig S7: Gate leakage current with (a) SiO_2 , (b) AI_2O_3 , (c) HfO_2 and (d) Ta_2O_5

Fig S8: - CVD reactor images

Fig S9: CVD P&ID Diagram

Substrate is highly doped p-type Si (100) SiO2 :- Thermally grown (in Clean Room) Al2O3 :- Deposited using ALD (in Clean Room) Ta2O5 :- Deposited using sputtering (in Clean Room, at room temperature) HfO2 :- Deposited using sputtering (in Clean Room, at room temperature)