Supporting Information for

Covalent chemical functionalization of $Ti_3C_2T_x$ MXene nanosheets with fullerenes C_{60} and C_{70} for enhanced nonlinear optical limiting

Yan Fang,[†] Zhiyuan Wei,[†] Zihao Guan,[†] Naying Shan,[†] Yang Zhao,[†] Fang Liu,[†] Lulu Fu,[†] Zhipeng Huang,[†] Mark G. Humphrey,[‡] Chi Zhang^{*, †}

[†] China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China

[‡]Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

Figure S1. a) Photographs of MXene and f-MXene dispersions, with deionized water (DI) as the solvent. b) Photographs of MXene, f-MXene, C_{60} -MXene, and C_{70} -MXene dispersions, as well as C_{60} and C_{70} solutions, with N, N-dimethylformamide (DMF) as the solvent. c) Photographs of MXene, f-MXene, C_{60} -MXene, and C_{70} -MXene dispersions, as well as C_{60} and C_{70} solutions, with the cosolvent (DMF/Toluene = 2 : 1, volume ratio) as the solvent. MXene-based samples are all at the same concentration of 0.1 mg ml⁻¹. C_{60} and C_{70} solutions are with a concentration of 0.5 mg ml⁻¹.

Figure S2. Concentration dependence of absorption spectra of a) MXene, b) f-MXene, c) C_{60} -MXene, and d) C_{70} -MXene in the cosolvent.

Figure S3. The absorbance of a) MXene, b) f-MXene, c) C_{60} -MXene, and d) C_{70} -MXene at different concentrations at their respective peak position around 800 nm. The straight lines are the linear fitting results of the data.

Figure S4. Low-angle XRD results for a) C_{60} -MXene and b) C_{70} -MXene.

Figure S5. a) Raman spectra of MXene, f-MXene, C_{60} -MXene, and C_{70} -MXene in the lowwavenumber region, and an absence of signal at 143 cm⁻¹ in all samples indicates a negligible existence of TiO₂. b) Raman spectra of fullerenes C_{60} and C_{70} .

Figure S6. ATR-IR spectra of 4-benzaldehyde diazonium tetrafluoroborate, C_{60} , and C_{70} .

Figure S7. XPS survey spectra of a) MXene, b) f-MXene, c) C₆₀-MXene, and d) C₇₀-MXene.

Figure S8. The absorption spectra of fullerenes C_{60} and C_{70} .

Figure S9. Z-scan data of pure solvent under the ns laser with an input intensity of 105 μ J.

Section S1. Data fitting of Z-scan curves.

The total absorption coefficient of a given material can be written as

$$\alpha(I) = \alpha_0 + \beta I, \qquad (\text{Equation S1})$$

where α_0 and β correspond to linear absorption coefficient and nonlinear absorption coefficient, respectively. *I* is the incident light intensity. The light propagation model in the measured sample can be expressed as¹

$$\frac{dI}{dz} = -(\alpha_0 + \beta I)I, \qquad (\text{Equation S2})$$

For the open-aperture Z-scan technique, the normalized transmittance is given as¹

$$T(z) = \sum_{m=0}^{\infty} \frac{\left[\frac{-\beta I_0 L_{eff}}{1 + z^2 / z_0^2}\right]^m}{(m+1)^{3/2}},$$
 (Equation S3)

where $L_{eff} = (1 - e^{-\alpha_0 L})/\alpha_0$ is the effective interaction length, α_0 stands for the linear absorption coefficient, L is the sample thickness, β is the nonlinear absorption coefficient, I_0 is the on-axis peak laser intensity at the focal point, and z_0 is the Rayleigh diffraction length.

By fitting the experimental Z-scan potints, β can be obtained. The imaginary part of the third-order nonlinear susceptibility ($Im\chi^{(3)}$) is calculated according to²

$$Im\chi^{(3)} = \left[\frac{10^{-7}C\lambda n^2}{96\pi^2}\right]\beta,$$
 (Equation S4)

where c is the speed of light, λ is the excitation wavelength, and n is the refractive index. For obtaining the nonlinear refractive index (n_2), the closed-aperture Z-scan data is fitted with the formula¹

$$T_{close/open} = 1 + \frac{4(z/z_0)\Delta\phi}{(z^2/z_0^2 + 9)(z^2/z_0^2 + 1)},$$
 (Equation S5)

where $T_{close/open}$ is the normalized transmittance for the sample at the z point and $\Delta \phi = 2\pi n_2 I_0 L_{eff} / \lambda$ stands for the nonlinear phase shift.

Figure S10. Z-scan scattering results of MXene, f-MXene, C_{60} -MXene, and C_{70} -MXene dispersions under ns pulses with a fluence energy of 105 μ J.

Figure S11. Z-scan data of pure solvent under the fs laser with an input intensity of 136 nJ.

Samples	Laser	E _{pulse} (μJ)	T_0	β (cm GW ⁻¹)	Im $\chi^{(3)}$ (\times 10 ⁻¹¹ esu)
MXene	532 nm		0.72	34.9 ± 1.9	1.23 ± 0.07
f-MXene			0.73	31.0 ± 1.7	1.09 ± 0.06
C ₆₀			0.76	26.2 ± 1.2	$0.92~\pm~0.04$
C_{70}	12 ns	105	0.69	41.7 ± 1.5	1.46 ± 0.05
C ₆₀ /MXene	10 Hz		0.72	35.8 ± 2.5	1.26 ± 0.09
C ₇₀ /MXene			0.69	45.7 ± 2.5	$1.61 ~\pm~ 0.09$
C ₆₀ -MXene			0.59	$74.9~\pm~1.8$	$2.63~\pm~0.06$
C ₇₀ -MXene			0.60	70.0 ± 1.8	2.46 ± 0.06
MXene	800 nm		0.95	$(1.70 \pm 0.07) \times 10^{-3}$	$(0.97 \pm 0.04) \times 10^{-4}$
f-MXene			0.95	$(1.81 \pm 0.06) \times 10^{-3}$	$(1.03 \pm 0.03) \times 10^{-4}$
C ₆₀					
C_{70}	34 fs	136×10^{-3}			
C ₆₀ /MXene	1 kHz	150 10	0.95	$(1.54 \pm 0.06) \times 10^{-3}$	$(0.88 \pm 0.03) \times 10^{-4}$
C ₇₀ /MXene			0.95	$(1.82 \pm 0.05) \times 10^{-3}$	$(1.03 \pm 0.03) \times 10^{-4}$
C ₆₀ -MXene			0.93	$(3.26 \pm 0.09) \times 10^{-3}$	$(1.85 \pm 0.05) \times 10^{-4}$
C ₇₀ -MXene			0.93	$(2.80 \pm 0.12) \times 10^{-3}$	$(1.59 \pm 0.07) \times 10^{-4}$

Table S1. Nonlinear optical parameters of measured samples based on the fitting of open-apertureZ-scan data.

Figure S12. Z-scan results of a) MXene, b) f-MXene, c) C_{60} -MXene, and d) C_{70} -MXene under the ns laser with an input energy of 105 μ J. e), f), g), and h) are Z-scan results of MXene, f-MXene, C_{60} -MXene, and C_{70} -MXene, respectively, under the fs laser with an input energy of 136 nJ.

Figure S13. The results of closed-aperture Z-scan measurements under a) ns pulses at 532 nm with the input energy of 105 μ J and b) fs pulses at 800 nm with the input energy of 136 nJ. Solid lines are fitted curves.

Samples	Laser	E _{pulse} (μJ)	n_2 (\times 10 ⁻³ cm ² GW ⁻¹)
MXene			-2.23 ± 0.16
C_{60}	532 nm		$-1.19 ~\pm~ 0.07$
C_{70}	12 ns	105	$-1.47 ~\pm~ 0.09$
C ₆₀ -MXene	10 Hz		$-2.73 ~\pm~ 0.09$
C ₇₀ -MXene	-		$-2.59 ~\pm~ 0.08$
Pure solvent			0.16 ± 0.01
MXene	800 nm	136 × 10 ⁻³	$(-7.60 \pm 0.23) \times 10^{-4}$
C_{60}			$(-3.34 \pm 0.21) \times 10^{-4}$
C_{70}	34 fs		$(-4.02 \pm 0.39) \times 10^{-4}$
C ₆₀ -MXene	1 kHz		$(-9.82 \pm 0.53) \times 10^{-4}$
C ₇₀ -MXene			$(-7.91 \pm 0.55) \times 10^{-4}$
Pure solvent			$(0.79 \pm 0.06) \times 10^{-4}$

Table S2. The nonlinear refractive indexes (n_2) of measured samples based on the fitting of closedaperture Z-scan data.

Figure S14. The relationship between ΔT_0 and E_{pulse} in ln-ln scale for a) MXene, b) C₆₀-MXene, and c) C₇₀-MXene based on the Z-scan data under the ns laser irradiation.

Figure S15. Variation of β of MXene, C₆₀-MXene, and C₇₀-MXene at ns pulses excitation with different E_{pulse} .

Figure S16. The relationship between ΔT_0 and E_{pulse} in ln-ln scale for a) MXene, b) C₆₀-MXene, and c) C₇₀-MXene based on the Z-scan data under the fs laser irradiation.

Figure S17. Variation of β of MXene, C₆₀-MXene, and C₇₀-MXene at fs pulses excitation with different E_{pulse} .

References

- M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Vanstryland, Sensitive measurement of optical nonlinearities using a single beam, *IEEE J. Quantum Electron.*, 1990, 26, 760-769.
- [2] H. Li, S. Chen, D. W. Boukhvalov, Z. Yu, M. G. Humphrey, Z. Huang and C. Zhang, Switching the Nonlinear Optical Absorption of Titanium Carbide MXene by Modulation of the Surface Terminations, *ACS Nano*, 2022, 16, 394-404.