Supporting Information

Crystal structure and magnetic properties of EuZrO₃ solid solutions

Sihui Li, Shinya Konishi, Takuya Kito, Koji Fujita, and Katsuhisa Tanaka

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

X-ray diffraction profiles

Fig. S1 X-ray diffraction profiles measured at room temperature (red crosses) and calculated profiles obtained by Rietveld analysis (black solid curves) for $A_x Eu_{1-x} ZrO_3$ ($0 \le x \le 1$), where A is Ca, Sr, and Ba. The vertical ticks (green) indicate the positions of the Bragg reflections, and the bottom solid lines (blue) correspond to the difference between the observed and the calculated intensity. A small amount of ZrO_2 was detected as an impurity and marked with an orange triangle for $EuZrO_3$, $Ba_xEu_{1-x}ZrO_3$ ($0.4 \le x \le 0.9$), $Ca_xEu_{1-x}ZrO_3$ ($0.1 \le x \le 0.4$) and ($0.6 \le x \le 0.9$), and $Sr_xEu_{1-x}ZrO_3$ ($0.1 \le x \le 0.5$).

¹⁵¹Eu Mössbauer spectrum

Fig. S2 Room-temperature ¹⁵¹Eu Mössbauer spectrum of EuZrO₃ (black solid circles) and theoretical spectrum calculated by taking quadrupole interaction into account (red solid curve). The component lines of the 12 transitions are also shown for the Eu²⁺ absorption peak at around 12 mm/s. The Eu³⁺ absorption peak at around 0.5 mm/s was analyzed by a single Lorenzian.

Fig. S2 depicts room temperature ¹⁵¹Eu Mössbauer spectrum of the EuZrO₃ sample. The spectrum exhibits a strong absorption peak assigned to Eu^{2+} at $-12 \sim -14$ mm/s and a weak absorption peak ascribed to Eu^{3+} at $0 \sim 1$ mm/s. The Eu^{2+} absorption peak was fitted using the method described by Shenoy et al since this peak has been analyzed as a pure quadrupole spectral peak ⁶⁰. The Eu^{3+} absorption peak was

fitted by a single Lorentzian. The fraction of absorption area of Eu^{2+} in the total absorption area due to europium ion (A_{Eu}^{2+}/A_{Eu}), the value of which is 0.94 as shown in Table S1, demonstrates that most of the europium ions are present as divalent state, confirming the efficiency of using ZrN as the reducing agent for the conversion of trivalent europium ions into divalent ones.

Table S1. The fitting parameters for ¹⁵¹Eu Mössbauer spectrum of EuZrO₃.

EuZrO ₃	$A_{\mathrm{Eu}^{2+}}/A_{\mathrm{Eu}}$	δ (mm/s)	γ (mm/s)	$eQ_{\rm g}V_{zz}$ (mm/s)	η (mm/s)
	0.94	-12.96(2)	2.41(6)	-10.20(37)	0.45(6)

 A_{Eu}^{2+}/A_{Eu} : Fraction of absorption area of Eu^{2+} in total absorption area due to ¹⁵¹Eu, δ : isomer shift relative to EuF₃ as a reference, γ : full width at half maximum of the Lorentzian, eQ_gV_{zz} : electric quadrupole interaction parameter, and $\eta = (V_{xx} - V_{yy})/V_{zz}$ asymmetry parameter, where *e* is the elementary charge, $V_{\sigma\sigma}$ is the electric field gradient in the σ direction and Q_g is the quadrupole moment of the nucleus in the ground state.

High-resolution X-ray fluorescence (HRXRF) spectrometry

Fig. S3 High-resolution X-ray fluorescence (HRXRF) spectrometry. (a) Measured Eu $L_{\alpha 12}$ spectra of $A_x Eu_{1-x} ZrO_3$ ($0 \le x \le 0.5$), where A is Ca and Ba. The spectra are plotted after smoothing. All the spectra are completely overlapped with each other. (b) Measured Mn $K_{\alpha 12}$ spectra of Mn metal as the standard before and after testing Eu $L_{\alpha 12}$ spectra of $A_x Eu_{1-x} ZrO_3$ and Eu_2O_3 . (c) Measured Eu $L_{\alpha 12}$ spectra of $EuZrO_3$ and Eu_2O_3 . (d) Measured Eu $L_{\alpha 12}$ spectra of EuZrO₃ (black curve) and fitted spectra (red curve) by Lorentzians. The Lorentzian peaks are displayed by different colors.

As shown in Fig. S3a, the spectra for all $A_x Eu_{1-x} ZrO_3$ samples have almost the same peak positions and intensities and are completely overlapped with each other. The Mn K_{a12} standard spectra were shown in Fig. S3b for each sample. Compared to the Eu L_{a12} spectral peak of EuZrO₃ at 65.12°, the peak position for Eu₂O₃ at 65.13° is slightly different (Fig. S3c). Additionally, the Eu L_{a12} spectrum of EuZrO₃ displays a distinct shoulder at around 65.2°. Since the presence of trivalent Eu ions in EuZrO₃ is confirmed by ¹⁵¹Eu Mössbauer spectrum, the main peak on the left is divided into three sub-peaks. The peak on the right in the Eu L_{a12} spectra of Eu₂O₃ and EuZrO₃ is found to have the same position at around 65.5°. To analyze the valence states of Eu in EuZrO₃, the Eu L_{a12} spectrum is deconvoluted into four Lorentzians (Fig. S3d). The parameters obtained by the fitting are listed in Table S2. The coefficient of determination (R^2) value of 0.999 indicates the accuracy of the fitting method. Especially, the FWHM and peak position of peak 2 are consistent with the left main peak in the Eu L_{a12} spectrum of Eu₂O₃ (trivalent Eu ions), revealing that the result is convincing. Since peak 3 and peak 4 attributed to divalent Eu ions form the left main peak combined with peak 2 in the Eu L_{a12} spectrum of EuZrO₃, the value of peak 2 area divided by the total area of three peaks represents the molar ratio of trivalent Eu ions. The value is consistent with that obtained from the ¹⁵¹Eu Mössbauer spectrum (6%). The presence of approximately 6% trivalent Eu ions in all A_xEu_{1-x}ZrO₃ samples is confirmed by HRXRF spectra with high consistency.

Table S2. The peak position (2θ) , peak area (A), and full width at half maximum (FWHM) of Lorentzian peaks used for the analysis of the measured spectrum of EuZrO₃.

EuZrO ₃	2θ (degree)	A	FWHM
Peak 1	65.4856	5.4258	0.0891
Peak 2	65.1311	2.9863	0.0819
Peak 3	65.1224	41.6294	0.0808
Peak 4	65.2176	2.7176	0.0659

Magnetic properties

Fig. S4 Temperature dependence of magnetic susceptibility χ (*T*) for (a) EuZrO₃ and (b) Ba_{0.3}Eu_{0.7}ZrO₃ solid solution. Black squares represent the measured data. Red curves denote theoretical curves.

Fig. S5 Dependence of magnetic susceptibility on magnetic field at 2 K for (a) $EuZrO_3$ and $A_{0.3}Eu_{0.7}ZrO_3$ with A = Ba, Ca, and Sr. (b) Magnified view of (a).