Supporting Information

Superconducting Be₂SH₃ with hydrogen kagome lattice at high pressure

Tingting Gu, Wenwen Cui,* Jian Hao, Jingming Shi, and Yinwei Li*

Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

E-mail: wenwencui@jsnu.edu.cn; yinwei li@jsnu.edu.cn

Fig. S00 Comparison of the fitted Birch-Murnaghan equation of states for *P6/mmm* Be₂SH₃ using calculated results with the PAW pseudopotentials and full-potential LAPW methods.

Fig. S01 Electron-phonon coupling constant, λ , versus Gaussian broadening, σ , for *P6/mmm* Be₂SH₃ at 200 GPa at q = (0, 0, 0) (a) and q = (0, 0, 0.554628) (b) using various *k*-grids. In (a) and (b) the *k*-meshes $16 \times 16 \times 24$ are considered to be converged for acquiring an accurate λ .

Table. S1. Superconducting parameters for P6/mmm Be₂SH₃ at 200 GPa: electron-phonon coupling parameter (λ), logarithmic average of phonon frequencies (ω_{log}) and estimated superconducting critical temperature (T_c) for values of the Coulomb pseudopotential, using the listed q-grids.

q-meshes	λ	$\omega_{\log}\left(K ight)$	$T_{\rm c}$ (K)
$4 \times 4 \times 6$	0.53	1161.28	18
$6 \times 6 \times 9$	0.58	1029.08	22

Fig. S1 (a) Convex hull of Be-S system and (b) Phase diagram of Be-S-H system at 100 GPa.

Fig. S2 Phase diagram of Be-S system at (a) 200 GPa, (b) 300 GPa. Convex hulls are shown as continuous lines, with (red) and without (black) the inclusion of zero-point vibrational enthalpy (ZPE).

Fig. S3 The calculated formation enthalpy of (a) P6/mmm Be₂SH₃ and (b) $P\overline{42}_1c$ BeS₄ and crystal as a function of pressure relative to the competing element and binary compounds.

Table. S2. Charge transfer of Be, S and H atoms in one unit cell. The negative and positive signs indicate electron gain and loss, respectively.

Phases	Pressure (GPa)	Atoms	Charge (e)
$P\overline{4}2_1c$ BeS ₄	190	Be (2 <i>a</i>)	-1.63
	180	S (8 <i>e</i>)	0.41
$P\overline{4}2_1c$ BeS ₄	200	Be (2 <i>a</i>)	-1.62
	300	S (8 <i>e</i>)	0.41
P6/mmm Be ₂ SH ₃		Be (2 <i>d</i>)	-1.65
	100	S (1 <i>b</i>)	0.97
		H (3 <i>f</i>)	0.78
<i>P6/mmm</i> Be ₂ SH ₃		Be (2 <i>d</i>)	-1.65
	200	S (1 <i>b</i>)	1.11
		H (3 <i>f</i>)	0.73
<i>P6/mmm</i> Be ₂ SH ₃		Be (2 <i>d</i>)	-1.64
	300	S (1 <i>b</i>)	1.17
		H (3 <i>f</i>)	0.70

Fig. S4 The ELF of (a) P6/mmm Be₂SH₃ at 200 GPa and (b) $P\overline{42}_1c$ BeS₄ at 300 GPa, the ELF isosurfaces with a value of 0.75.

Fig. S5 The calculated Crystalline Orbital Hamiltonian Population (COHP) and Integrated Crystalline Orbital Hamiltonian Population (ICOHP) of BeS₄ with S-S distances of (a) 1.96, (b) 2.06 and (c) 2.10 Å at 300 GPa. The horizontal lines present the Fermi levels. The negative COHP indicates bonding and positive COHP indicates antibonding and the negative ICOHP values represent the bonding interactions between the S atoms.

Fig. S6 Atom-projected density of states near the Fermi level for *P6/mmm* Be₂SH₃ at 100 GPa, 200 GPa and 300 GPa.

Fig. S7. Calculated phonon spectra for P6/mmm Be₂SH₃ at 200 GPa highlighting the primary nature of the different modes. *xy* shown as red are in-plane vibrations and *z* shown as blue are out-of-plane vibrations.

Fig. S8 The vibrational modes at (a) Γ -A (b) H-K and (c) M-L of *P6/mmm* Be₂SH₃ at 100 GPa. The arrows represent the direction of atomic vibration.

Fig. S9 (a) Phonon-dispersion curves, PHDOS, projected on the Be, S, and H atoms, Eliashberg spectral function, $\alpha^2 F(\omega)$ and λ for *P6/mmm* Be₂SH₃ at 300 GPa. (b) Pressure dependence of T_C, the logarithmic average phonon frequency ω_{log} , the total EPC parameter λ and the contribution of H atoms to the total λ , namely λ (H), for *P6/mmm* Be₂SH₃.

Fig. S10 Phonon dispersion curves of P6/mmm Be₂SH₃ at the pressure of 60 GPa, PHDOS, projected on the Be, S, and H atoms.

Fig. S11 T_c values of the reported binary chalcogenides at high pressure.

Table S3. The structure information of P6/mmm Be₂SH₃ at 200 GPa and $P\overline{42}_{1}c$ BeS₄ at 300 GPa.

Space group	Lattice parameters	Atomic coordinates			Sites	
Pressure	(Å)					
P6/mmm Be ₂ SH ₃	a=3.48	Be	0.33333	0.66667	0.50000	2d
200 GPa	c=2.06	S	0.00000	-0.00000	0.50000	1 <i>b</i>
		Н	0.50000	-0.00000	0.00000	3 <i>f</i>
$P\overline{4}2_1c$ BeS ₄	a=4.21	Be	0.00000	0.00000	0.00000	2 <i>a</i>
300 GPa	c=4.37	S	0.88184	0.70802	0.37436	8e