Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Superlattice-stabilized structure and charge transfer assisted

photoluminescence enhancement in a samarium-doped high entropy

perovskite oxide

Lei Xia^a, Zhan Mao^a, Xin Wang^a, Jing Zhu^a, Jiyang Xie^{a,b}, Zhe Wang^c, Wanbiao Hu^{a,b}*

^aKey Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International

Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University,

Kunming 650091, P. R. China

^b Electron Microscopy Center, Yunnan University, Kunming 650091, P. R. China

^c College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, P. R. China

	Ca _{0.98} Sm _{0.02} (M ₅)O ₃	Ca _{0.98} Sm _{0.02} SnO ₃	
Lattice parameters (Å)			
а	5.5140	5.5318	
b	7.8816	7.9061	
c	5.6634	5.6801	
Bond length (Å)			
B-O ₁	2.000	2.055	
B-O ₂₁	2.014	2.057	
B-O ₂₂	2.071	2.056	
B-O ₂₃	2.014	2.057	
B-O ₂₄	2.071	2.056	
Bond angle (°)			
O1-B-O21	86.5565	89.9905	
O1-B-O22	93.4435	90.0095	
O1-B-O23	91.3169	88.3347	
O1-B-O24	88.6804	91.6653	

	Ca(M ₅)O ₃	CaSnO ₃ [1]	CaZrO ₃ [2]	CaHfO ₃	CaTiO ₃ [3
O-B-O bending modes	189	167	147	151	159
		187	191		184
	235		216	214	228
				233	
	258		265	265	250
	286	282	289	293	290
	353	361	360	362	340
			389		
B-O ₃ torsional modes	452	447	441	450	
	480		472	480	473
					498
B-O symmetric stretching	525		549	588	634

Table S.2 The Raman bands position of Sm³⁺-doped phosphor samples.

Figure S1. Bond length (a) and angle (b) fluctuations for all the compositions.

Figure S2. The PL lifetime curve and after fitting of Sm³⁺-doped phosphor samples under 407 nm excitation.

Figure S3. The PL lifetime curve and after fitting of Sm³⁺-doped phosphor samples under 290 nm excitation.

Figure S4. The PLQY measurement of $Ca_{0.98}Sm_{0.02}ZrO_3$ (a), $Ca_{0.98}Sm_{0.02}TiO_3$ (b), $Ca_{0.98}Sm_{0.02}SnO_3$ (c) and $Ca_{0.98}Sm_{0.02}NbO_3$ (d) phosphor.

Decay lifetime

The optical decay time is fitted via the third-order exponential function with the following equation [4]:

$$I(t) = I_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)$$
(S1)

Where *t* represents the time, I(t) is the emission intensity corresponding to time *t*, I_0 is the initial emission intensity corresponding to time t = 0, A_1 , A_2 and A_3 are constants, τ_1 , τ_2 and τ_3 are lifetimes for the exponential components. The average lifetime τ can be obtained by the formula as follows:

$$\tau = \left(A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2\right) \left(A_1\tau_1 + A_2\tau_2 + A_3\tau_3\right)$$
(S2)

Color coordinates

The quality of the color produced by Sm^{3+} -doped $Ca(M_5)O_3$ is evaluated by calculating chromaticity Commission International de l'Eclairage (CIE1931) coordinates. The calculations are based on the evaluation of three CIE coordinates *x*, *y* and *z* defined by the equation [5]:

$$\begin{cases} x = X/(X + Y + Z) \\ y = Y/(X + Y + Z) \\ z = Z/(X + Y + Z) \end{cases}$$
(S3)

Where x + y + z = 1, and depends upon the tristimulus values, X, Y and Z. However, to specify the chromaticity of a sample, two independent variables x and y, are generally used. The values for X, Y and Z are proportional to the spectral intensity of the material, $I(\lambda)$, and chromatic functions of the observer, \overline{x} , \overline{y} and \overline{z} as the following equation:

$$\begin{cases} X = \int_{450nm}^{750nm} I(\lambda) \cdot \overline{x}(\lambda) d\lambda \\ Y = \int_{450nm}^{750nm} I(\lambda) \cdot \overline{y}(\lambda) d\lambda \\ Z = \int_{450nm}^{750nm} I(\lambda) \cdot \overline{z}(\lambda) d\lambda \end{cases}$$
(S4)

Correlated color temperature (CCT)

The parameter of CCT can be speculated using McCany empirical formula, which is illustrated as [6]: $CCT = -449n^3 + 3525n^2 6823.3n + 5520.33$ (S5) Where n = (x - 0.3320)/(y - 0.1858).

Color purity [7]

The parameter of color purity [7] can be obtained via the follow equation [8]:

$$CP = \sqrt{(x - x_i)^2 + (y - y_i)^2} / \sqrt{(x_d - x_i)^2 + (y_d - y_i)^2}$$
(S6)

Where (x_i, y_i) is the illuminant point (0.3101, 0.3162), which corresponds to the CIE1931 Standard Source C. The color coordinates (x_d, y_d) come from the domain emission.

PL quantum efficiency

PL quantum efficiency (PLQY) can be calculated according to the formula as follows [5]:

$$PLQY = \int L_S / \left(\int E_R - \int E_S \right)$$
(S7)

Where L_S is the emission spectrum of the sample, E_R and E_S stand for the excitation spectra without and with the sample in the integrating sphere, respectively.

Thermal quenching mechanism

To investigate the thermal quenching mechanism of the Sm^{3+} -doped $Ca(M_5)O_3$ sample, the activation energy [3] was calculated via the following Arrhenius equation [9]:

$$\ln[(I_0/I(T)) - 1] = \ln A - (E_a/kT)$$
(S8)

Where I_0 is the initial emission intensity of the phosphor at room temperature, I(T) is the emission intensity at testing temperature T, A is an invariable constant for a certain host, and k represent the Boltzmann constant (8.629 * 10⁻⁵ eV/K). on the basis of the equation, the relationship between $\ln[(I_0/I(T))-1]$ versus 1/kT is shown.

References

[1] M. Tarrida, H. Larguem, M. Madon, Structural investigations of (Ca,Sr)ZrO₃ and Ca(Sn,Zr)O₃ perovskite compounds, Phys. Chem. Miner. 36(7) (2009) 403-413.

[2] Z. He, X.-Y. Sun, X. Gu, Enhancements of luminescent properties of $CaZrO_3$: Eu^{3+} by A^+ (A = Li, Na, K), Chem. Phys. 513 (2018) 94-98.

[3] H. Zheng, I. Reaney, G. de Gyorgyfalva, R. Ubic, J. Yarwood, M. Seabra, V. Ferrira, Raman spectroscopy of CaTiO₃based perovskite solid solutions, J. Mater. Res. 19(2) (2004) 488-495.

[4] G. Zhu, Z.W. Li, F.G. Zhou, M. Gao, C. Wang, S. Xin, Novel layered niobate phosphors SrBaNb₄O₁₂: Re³⁺ (Re= Eu, Dy, Sm and Pr): Crystal structure, electronic structure and luminescence property investigation, J. Lumin. 211 (2019) 76-81.

[5] Z.Y. Fang, D. Yang, Y.K. Zheng, J. Song, T. Yang, R. Song, Y. Xiang, J. Zhu, NUV-pumped luminescence of thermally stable samarium-activated alkali metal borophosphate phosphor, J. Adv. Cream. 10(5) (2021) 1072-1081.

[6] C. Mccamy, Correlated Color Temperature as an Explicit Function of Chromaticity Coordinates, Color Res. Appl. 17(2) (1992) 142-144.

[7] M. Gazda, T. Miruszewski, D. Jaworski, A. Mielewczyk-Gryn, W. Skubida, S. Wachowski, P. Winiarz, K. Dzierzgowski, M. Lapinski, I. Szpunar, E. Dzil, Novel Class of Proton Conducting Materials - High Entropy Oxides, ACS Mater. Lett. 2(10) (2020) 1315-1321.

[8] L. Xia, J.Y. Xie, W.B. Hu, Locally-ordered A-site vacancy assisted photoluminescence enhancement in simply rareearth doped perovskite oxide, Mater. Adv. 3(23) (2022) 8608-8615.

[9] T. Hu, L. Xia, W. Liu, J. Xie, Z. Jiang, F. Xiong, W. Hu, Dy^{3+} doped LaInO₃: a host senstized white luminescence phosphor with exciton mediated energy transfer, J. Mater. Chem. C 9(38) (2021) 13410-13419.