Improved energy storage performance of sandwich-structured P(VDF-HFP)-based nanocomposites by the additions of inorganic

nanoparticles

Yan Guo,^a Di Zhou,^{*a} Da Li,^a Weichen Zhao,^a Yifei Wang,^b Lixia Pang,^c Zhongqi Shi,^d Tao Zhou,^e Shikuan Sun,^f Charanjeet Singh,^g Sergei Trukhanov,^h Antonio Sergio Bezerra Sombra,ⁱ and Guohua Chen^j

Fig.S1. Schematic diagram of hysteresis loop of nonlinear dielectric.

Fig.S2. TEM image (a) and grain size distribution (b) of KNN-BZT nanoparticles.

^{*}Corresponding author E-mail address: zhoudi1220@gmail.com (Di Zhou)

Fig.S3. (a) and (b) Dielectric properties of sandwich-structured nanocomposites at 1 Hz-1 kHz. (c) and (d) are the dielectric constants and losses of nanocomposites at 10 Hz.

Fig.S4. Stress-strain curves of sandwich-structured nanocomposites.

Fig.S5. Hysteresis loops of sandwich-structured nanocomposites under different electric fields.

Fig.S6. D_{max} , D_{r} and D_{max} - D_{r} of sandwich-structured nanocomposites under different

electric fields.

Fig.S7. Single-layer 0.6 vol.% KNN-BZT/P(VDF-HFP) nanocomposites: (a) Hysteresis loops; (b) D_{max} , D_{r} and D_{max} - D_{r} ; (c) Discharged energy density and efficiency.