Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Sr₂Sb₂O₇: a novel earth abundant oxide thermoelectric

Luisa Herring Rodriguez^a, Kieran B. Spooner^a, Maud Einhorn^a and

David O. Scanlon^{a,b}

^a Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.

^b Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, UK

E-mail: d.scanlon@ucl.ac.uk

Convergence

Fig. S1: The total VASP energies of $Sr_2Sb_2O_7$ against a) plane wave cut-off an b) k-point mesh. The values were converged to 10meV atom⁻¹ at 500 eV and a k-point mesh of 3x3x3.

AMSET inputs

Table S1: The k-point meshes used in the density of states (DoS), the interpolated DoS used in AMSET, density functional perturbation theory (DFPT) and optics calculations for Sr₂Sb₂O₇. The high-frequency dielectric constant was calculated from the optics calculation, the ionic dielectric constant, elastic constant, piezoelectric constant (which in Sr₂Sb₂O₇ was 0) and polar optical phonon frequency were calculated from DFPT. The static dielectric constant is the sum of the high-frequency and ionic dielectric constants.

Calculation type	DoS	Zero-weighted DOS	DFPT	Optics
k-point mesh	$7 \times 8 \times 8$	$11 \times 11 \times 11$	$3 \times 3 \times 3$	$6 \times 6 \times 6$

High frequency dielectric cons	$tant \epsilon_0 =$	2.88 - 0.02 0.01	- 0.02 2.88 - 0.01	0.01 - 0.01 2.90
Static dielectric constant $\epsilon_0 =$	[13.48 0.53 1.63	0.55 13.51 - 1.56	1.62 - 1.57 12.84	

$$Elastic \ constant = \begin{bmatrix} 267.9 & 72.7 & 100.8 & 0.5 & 1.1 & -7.5 \\ 72.7 & 267.9 & 100.8 & -1.4 & 7.5 & -1.3 \\ 100.8 & 100.8 & 240.9 & 0.9 & 5.5 & -5.7 \\ 0.5 & -1.4 & -0.9 & 69.0 & -0.2 & 0 \\ 1.1 & 7.5 & 5.5 & -0.2 & 97.8 & -0.1 \\ -7.5 & -1.3 & -5.7 & 0 & -0.1 & 97.8 \end{bmatrix}$$

Polar Optical phonon frequency (THz) = 10.00

Fig. S2: Interpolation factor convergence at 300 K, with respect to the conductivity, Seebeck coefficient and thermal conductivity. It was converged at a factor of 15 ($^{23} \times ^{25} \times ^{27}$).

Fig. S3: Phonon supercell convergence. The key aspects of the phonon band structure are converged with the 2x2x2 supercell

Fig. S4: Transport properties of Sr₂Sb₂O₇ split by direction.

Fig. S5: Convergence of the lattice thermal conductivity at 1000 K against q-point mesh. The solid lines represent the lattice thermal conductivities in the x, y and z directions, and the dashed lines represent the change in lattice thermal conductivities in those directions. It converged to below 0.01 W m⁻¹ K⁻¹ in all directions at a mesh of 22x22x22.

Fig. S6: ZT map calculated with the CTRA, with a maximum ZT of 1.6 at 1400K and a carrier concentration of $2\times10^{19}cm^{-3}$

Fig. S7: Lattice thermal conductivity of $Sr_2Sb_2O_7$ calculated with and without nanostructuring to 10 nm.

Fig. S8: Transport properties of $Sr_2Sb_2O_7$ with and without nanostructuring to 10 nm.