Supplementary Materials for

Superconductivity in Ca₃H₂ electride at moderate pressure

Ziqiang Chen¹, Teng Xie¹, Pengfei Liu², Rui Xiong¹, Zhou Cui¹, Zihao Xu¹, Cuilian Wen^{1,*}, Baotian Wang^{2,3*}, and Baisheng Sa^{1,*}

 ¹Multiscale Computational Materials Facility, and Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
²Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
³Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China

Corresponding Authors: *clwen@fzu.edu.cn (C. Wen); *wangbt@ihep.ac.cn(B. Wang); *bssa@fzu.edu.cn (B. Sa)

Pressure (GPa)	Atom	Site	Х	У	Z
0	Cal	2c	0.67	0.33	0.75
	Ca2	4f	0.33	0.67	0.91
	H1	4f	0.67	0.33	0.63
6.8	Cal	2c	0.67	0.33	0.75
	Ca2	4f	0.33	0.67	0.91
	H1	4f	0.67	0.33	0.63
10	Cal	2c	0.67	0.33	0.75
	Ca2	4f	0.33	0.67	0.91
	H1	4f	0.67	0.33	0.63
14	Cal	2c	0.67	0.33	0.75
	Ca2	4f	0.33	0.67	0.91
	H1	4f	0.67	0.33	0.62
19.5	Cal	2c	0.67	0.33	0.75
	Ca2	4f	0.33	0.67	0.92
	H1	4f	0.67	0.33	0.62

Table S1. The atomic Wyckoff positions for P63/mmc Ca₃H₂ at different pressures

Compounds	Dimension	Pressures (GPa)	$T_{\rm c}$ (K)	Reference
<i>I-43d</i> C12A7:e ⁻	0D	ambient condition	0.4	1
<i>Cmcm</i> Al ₅ Si	0D	15	0.15	2
Pnma Ca ₂ S	0D	50	0.26	3
C2/m Li ₉ Te	0D	50	4.01	4
C2/m Li ₁₀ Se	0D	50	16	5
$P2_1/m$ Ca ₃ S	0D	60	7.04	3
<i>R-3m</i> Li ₆ C	0D	80	10	6
$C2/m \operatorname{Li}_{10}$ Te	0D	100	4	4
<i>I4/mmm</i> YXe ₂	0D	100	0.3	7
Pbam YXe	0D	150	3.9	7
<i>I4/mcm</i> Y ₃ Xe	0D	150	6.5	7
C2/m Li ₆ Al	0D	150	29	8
P6/mmm AsLi7	0D	150	38.4	9
<i>Fm-3m</i> Li ₈ Au	0D	250	73.1	10
Immm Li ₅ S	0D	500	8.6	11
<i>P63/mcm</i> Zr ₅ Sb ₃	1D	ambient condition	2.3	12
P63/mcm Nb ₅ Ir ₃	1D	ambient condition	9.4	13
P63/mmc Y ₃ Si	1D	50	14.49	14
<i>P63/mmc</i> Ca ₃ Si	1D	100	17.6	15
R- $3m$ Y ₂ C	2D	ambient condition	0.9	16
R- $3m$ Ba ₂ N	2D	ambient condition	3.4	17
<i>P63/mmc</i> Ca ₃ H ₂	2D	19.5	8.4	This work
P6/mmm Li ₅ Si	2D	100	7.2	18
<i>P-1</i> $Li_{11}P_2$	2D	200	4.63	19
C2/c Li ₅ P	2D	200	2.61	19
C2/c Li ₈ P	2D	200	7.15	19
P6/mmm Li ₅ C	2D	210	48.3	20
C2/c Li ₆ P	2D	270	39.3	19
$C2/m \operatorname{Li}_{15}P_2$	2D	300	18.5	19

Table S2. $T_{\rm c}$ and dimension of reported electrides at selected pressures

Fig. S1. The *k*-point test results for (a) c and (b) a/b directions.

Fig. S2. The lattice constants of Ca_3H_2 at different pressures.

Fig. S3. Free energy evolution for Ca₃H₂ at (a) 300 K and (b) 500 K in ab initio molecules dynamic simulations under ambient condition.

Fig. S4. Phonon dispersions and the phonon DOS for Ca_3H_2 (a) under ambient condition and at (b) 6.8 GPa, (c) 10 GPa, (d) 14 GPa, (e) 19.5 GPa, and (f) 20 GPa, respectively.

Fig. S5. (a) The ELF with an isosurface value of 0.75 and (b) ESDP with an isosurface value of -0.1 V for Ca_3H_2 at different pressures. X1, and X2 denote the different anionic electrons.

Fig. S6. The ELF 2D line profiles and bond points of the Ca–H bonds in Ca₃H₂ under different pressures.

Fig. S7. The ESDP obtained separately from (a) QuantumATK and (b) (added as Fig. S4 in revised manuscript) VASP calculations.

Fig. S8. The DOS with and without pseudo atoms under selected pressures.

Fig. S9. Phonon dispersions weighted by the magnitude of the EPC, the moderesolved Eliashberg spectral function $2 \cdot \alpha^2 F(\omega)/\omega$, and the frequency-dependent electron-phonon coupling parameters $\lambda(\omega)$ for Ca₃H₂ at (a) 6.8 GPa, and (b) 14 GPa. The sizes of blue dots are proportional to the phonon linewidth γ_{qv} . Phonon dispersions weighted by the vibrational modes of different atoms for Ca₃H₂ at (c) 6.8 GPa and (d) 14 GPa.

Fig. S10. The single *q*-point phonon test results.

Fig. S11. Phonon dispersion comparison of Ca_3H_2 at different *q*-points of (a) $4 \times 4 \times 1$, and (b) $8 \times 8 \times 1$ under 19.5 GPa.

Fig. S12. Integration of density of states for interstitial anion electrons.

Reference

- 1 M. Miyakawa, S. W. Kim, M. Hirano, Y. Kohama, H. Kawaji, T. Atake, H. Ikegami, K. Kono, and H. Hosono, *J. Am. Chem. Soc.*, 2007,**129**, 7270-7271.
- 2 Q. Wang, K. Zhao, S. Wei, H. Liu, and S. Zhang, *Mater. Today Phys.*, 2022,28, 100853.
- 3 Y.-X. Liu, C. Wang, S. Han, X. Chen, H.-R. Sun, and X.-B. Liu, *Chin. Phys. Lett.*, 2021,**38**, 036201.
- 4 X. H. Zhang, F. Li, A. Bergara, and G. C. Yang, Phys. Rev. B, 2021,104, 134505.
- 5 X. Zhang, Y. Zhao, A. Bergara, and G. Yang, J. Chem. Phys, 2022, 156, 194112.
- 6 Z. Liu, Q. Zhuang, F. Tian, D. Duan, H. Song, Z. Zhang, F. Li, H. Li, D. Li, and T. Cui, *Phys. Rev. Lett.*, 2021,**127**, 157002.
- 7 D. Zhou, D. Szczęśniak, J. Yu, C. Pu, and X. Tang, J. Phys. Chem. C, 2019,123, 9323-9330.
- 8 X. Wang, Y. Wang, J. Wang, S. Pan, Q. Lu, H.-T. Wang, D. Xing, and J. Sun, *Phys. Rev. Lett.*, 2022,**129**, 246403.
- 9 Z. Wan, W. Xu, T. Yang, and R. Zhang, Phys .Rev. B, 2022,106, L060506.
- 10 X. Zhang, Y. Yao, S. Ding, A. Bergara, F. Li, Y. Liu, X.-F. Zhou, and G. Yang, *Phys .Rev. B*, 2023,107, L100501.
- 11 C. Kokail, C. Heil, and L. Boeri, Phys. Rev. B, 2016,94, 060502.
- 12 B. Lv, X. Zhu, B. Lorenz, F. Wei, Y. Xue, Z. Yin, G. Kotliar, and C. Chu, *Phys .Rev. B*, 2013,**88**, 134520.
- 13 Y. Zhang, B. Wang, Z. Xiao, Y. Lu, T. Kamiya, Y. Uwatoko, H. Kageyama, and H. Hosono, *npj Quantum Mater.*, 2017,2, 45.
- 14 J. Zhang, G. Chen, and H. Liu, J. Phys. Chem. L, 2021, 12, 10388-10393.
- 15 B. Sa, R. Xiong, C. Wen, Y.-L. Li, P. Lin, Q. Lin, M. Anpo, and Z. Sun, J. Phys. Chem. C, 2020,124, 7683-7690.
- 16 Y. Ge, S. Guan, and Y. Liu, New J. Phys., 2017, 19, 123020.
- 17 X. L. Qiu, J.-F. Zhang, H.-C. Yang, Z.-Y. Lu, and K. Liu, *Phys .Rev. B*, 2022,105, 165101.
- 18 J. Y. You, B. Gu, G. Su, and Y. P. Feng, J. Am. Chem. Soc., 2022,144, 5527-5534.
- 19 Z. Zhao, S. Zhang, T. Yu, H. Xu, A. Bergara, and G. Yang, *Phys. Rev. Lett.*, 2019,**122**, 097002.
- 20 Z. S. Pereira, G. M. Faccin, and E. Z. da Silva, J. Phys. Chem. C, 2021,125, 8899-8906.