Supporting information

Figure S1. TC standard curve for absorbance and concentration.

Figure S2. The powder XRD patterns of the $K_2Ti_{8-x}Ru_xO_{17}$ precursors with different doping concentrations (Ru:(Ru+Ti)=0%, 1%, 3%, 5%, 7%).

Figure S3. N₂ adsorption-desorption isotherms of $Ti_{1-x}Ru_xO_{2-y}$ with different molar ratios (Ru:(Ru+Ti)=0%, 1%, 3%, 5%, 7%).

Figure S4. Pore size distribution of $Ti_{1-x}Ru_xO_{2-y}$ with different molar ratios (Ru:(Ru+Ti)=0%, 1%, 3%, 5%, 7%).

Figure S5. (a) SEM of $Ti_{0.95}Ru_{0.05}O_{2-y}$. (b) EDS of $Ti_{0.95}Ru_{0.05}O_{2-y}$.

Figure S6. XPS survey spectra of (a) $K_2 Ti_{7.6} Ru_{0.4} O_{17}$ and (b) $Ti_{0.95} Ru_{0.05} O_{2\text{-y}}.$

Figure S7. (a) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) of TiO₂. (b) HAADF-STEM of Ti_{0.95}Ru_{0.05}O_{2-y}. (c) Mapping of Ti_{0.95}Ru_{0.05}O_{2-y}.

Figure S8. (a) Transient photocurrent response and (b) the EIS Nyquist plots of TiO_2 and $Ti_{0.95}Ru_{0.05}O_{2-y}$.

Figure S9 The photocatalytic degradation rate statistics of TC and MB by Ti_{1-x}Ru_xO_{2-y}.

Figure S10. Photocatalytic degradation of MB of $Ti_{1-x}Ru_xO_{2-y}$ under simulated sunlight: (a) degradation efficiency of MB (Initial conditions: 20 mg/L MB, 1 g/L catalysts.). (b) reaction kinetics of MB photodegradation curve. (c) UV-vis absorption spectrum of $Ti_{0.95}Ru_{0.05}O_{2-y}$ photocatalytic degradation of MB.

Figure S11 HPLC-MS of photocatalytic degradation TC by $Ti_{0.95}Ru_{0.05}O_{2-y}$ in different reaction time periods. (a) 30 min, peak time: 7.38 min. (b) 40 min, peak time: 10.50 min. (c) 40 min, peak

time: 15.07 min. (d) 70 min, peak time: 2.52 min. (e) 50 min, peak time: 8.72 min. (f) 50 min, peak time: 1.67 min. (g) 70 min, peak time: 1.68 min. (h) 50 min, peak time: 7.82 min.

Figure S12 (a) and (b) Chemical structural formula of tetracycline hydrochloride from different perspective.

Table S1. Specific surface area of $Ti_{1\text{-}x}Ru_xO_{2\text{-}y}$ with different molar ratios.

Samples	Element	Weight/g	Volume/ ml	Dilution factor	Instrument indication mg/L	Concentration/ mg/kg
K ₂ Ti _{7.6} Ru _{0.4} O ₁₇	Ru	0.0408	50	50	0.592	36116.1208
$K_2 Ti_{7.6} Ru_{0.4} O_{17}$	Ti	0.0408	50	50	5.7969	355203.6788
$Ti_{0.95}Ru_{0.05}O_{2-y}$	Ru	0.0563	50	10	7.225	64165.8035
Ti _{0.95} Ru _{0.05} O _{2-y}	Ti	0.0563	50	50	14.1216	627069.8474

Table S3. The degradation rates of TC, kinetic constants k value and correlation coefficient under different catalysts.

Photocatalysts	Light source	Degradation rate	k /min ⁻¹	References
Bi ₂ WO ₆	Visible	77.1%	0.021	[24]
NaTaO ₃ @WO ₃	Visible	60.9%	None	[25]
Sb_2O_3	UV	80.6%	None	[26]
g-C ₃ N ₄ /LaCoO ₃	UV-Vis	92.0%	0.019	[27]
$Pb_4(BO_3)_2SO_4$	UV-Vis	90.6%	0.216	[28]
l-ZnFe ₂ O ₄	Visible	84.1%	0.067	[29]
N-TiO ₂	UV	94.8%	0.038	[30]
Ag@SnO ₂ /TiO ₂	Simulated sunlight	83.1%	0.057	[31]
Ag-Bi ₂ MoO ₆ /TiO ₂	Simulated sunlight	90.8%	0.020	[32]
TiO ₂ /GO	Visible	53.6%	None	[33]
$Ti_{0.95}Ru_{0.05}O_{2-y}$	Simulated sunlight	98.7%	0.078	This work