Electronic Supplementary Information

Exploring Dual-Emission Properties in Mn⁴⁺ Distinctively Activated BaTaF₇ Red Emitting Phosphor

Konglan Chen^a, Shiyu Jia^a, Zifan Shao^a, Xinxin Han^b, Jian Yuan^a, Yayun Zhou^{a*}, Tingting Deng^{a*}

^a Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China

^b School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.

Corresponding author:

E-mail: zhou-yayun@foxmail.com (Y.Y. Zhou), tingtingdeng0803@163.com (T. T. Deng);

Figures

Fig. S1. X-ray diffraction patterns of BTF with different dopant

concentrations from 0.5 mol% to 6 mol%.

Fig. S2. The local symmetry of Mn^{4+} in $BaTaF_7$ was obtained after the M3, M4 and M5 models were optimized.

Fig. S3. Tanabe-Sugano energy-level diagram of Mn⁴⁺ ions in an

octahedral crystal field;

Fig.S4. Normalized PL spectra of BTF phosphors with different Mn^{4+}

doping concentrations.

Fig. S5. PL spectra of BTF(3%) and the reference sample measured using an integrating sphere for IQE, AE and EQE.

Fig. S6. Temperature-dependent decay curves and lifetime analysis of BaTaF₇:3%Mn⁴⁺. (a) Decay curves at 627 nm with increasing temperature. (b) Bi-exponential fitting of the decay curves to extract the lifetimes τ_1 and τ_2 at 627 nm.

Fig. S7 PL integrated intensity of BTF (3%) at 300 K and 400 K during heating-cooling

cycles.

Tables

Table S1 Schemes of different ratios of K_2MnF_6 to Ta_2O_5 for the experimental of BaTaF₇:Mn⁴⁺ phosphor and actual doping amount of Mn⁴⁺ from ICP test results.

Sample	Experimental ratio of K ₂ MnF ₆ to BaTaF ₇ (mol %)	Actual doping concentration of Mn to Ta (mol %)
1	0.5	0.19
2	1	0.46
3	2	0.86
4	3	1.22
5	4	1.51

Table 52. The Refined Structure parameters of Darar 7.1011 - Sample	Table	S2 .	The	Refined	structure	parameters	of BaTaF	₇ :Mn ⁴⁺	sampl
--	-------	-------------	-----	---------	-----------	------------	----------	--------------------------------	-------

Atom	Х	Y	Ζ	Occ.	В	Site
Та	0.22374	0.22374	0.22374	0.9975	0.200	8c
Mn1	0.22374	0.22374	0.22374	0.0025	0.200	8c
Ba 1	0.00000	0.00000	0.00000	0.9975	0.518	4a
Mn2	0.00000	0.00000	0.00000	0.0025	0.518	4a

_								
	Ba 2	0.50000	0.00000	0.00000	1.000	0.722	4b	
	F 1	0.25800	0.05590	0.11680	1.000	0.200	24d	
	F 2	0.36420	0.27910	0.10250	1.000	0.200	24d	
	F 3	0.33590	0.33590	0.33590	1.000	1.650	8c	
								*

Table S3. Crystallographic data of BaTaF₇:Mn⁴⁺ (derived from the Rietveld structure analysis of XRD pattern)

Formula	$BaTaF_7: Mn^{4+}$
Crystal system	Cubic
Space group	Pa3
a (Å)	9.92864(6)
b (Å)	9.92864(6)
c (Å)	9.92864(6)
α	90.0000
β	90.0000
γ	90.0000
V _{cell} (Å ³)	978.744794(168)
Ζ	4
R_{wp}	8.318 %
R _p	6.590%
Gof	1.845

Table S4. The calculated formation energy (Ef) for four possible chargecompensation models of Mn^{4+} in $BaTaF_7$.

Model	Compounds	Replacement forms	Defects	Formation
Woder Compounds		Replacement forms	Dereets	energy (eV)
M1	BaTaF ₇	${\rm Mn^{4+}} \rightarrow {\rm Ta^{5+}}$	Fi	7.05
		$Mn^{4+} \rightarrow Ba^{2+}$		
M2	BaTaF ₇	${\rm Mn^{4+}} \rightarrow {\rm Ta^{5+}}$	Fi	9.47
		$Mn^{4+} \rightarrow Ba^{2+}$		
M3	BaTaF ₇	$Mn^{4+} \rightarrow Ta^{5+}$	V _F -	11.93
M4	BaTaF ₇	$Mn^{4+} \rightarrow Ba^{2+}$	V _{Ba2+}	21.02
M5	BaTaF ₇	$2Mn^{4+} \rightarrow 2Ta^{5+}$	/	27.61
		$Mn^{4+} \rightarrow Ba^{2+}$		