Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

## **Supporting Information**

Insight into electron transport performance of FAPbI<sub>3</sub>/SnO<sub>2</sub> interface

Xiangxiang Feng<sup>1</sup>, Biao Liu<sup>1\*</sup>, Mengqiu Cai<sup>2</sup>, Junliang Yang<sup>1</sup>

1. Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and

Electronics, Central South University, Changsha 410083, Hunan, China

2. School of Physics and Electronics Science, Hunan University, Changsha 410082, Hunan, China

\*Corresponding author. E-mail: <u>bliu612@csu.edu.cn</u>.



**FIG. S1.** Representative snapshot of AIMD trajectory at 300 K. (a-c) The PbI<sub>2</sub>/O, PbI<sub>2</sub>/SnO and PbI<sub>2</sub>/Sn interfaces. (d-f) The FAI/O, FAI/SnO and FAI/Sn interfaces.



**FIG. S2.** AIMD simulations of the interfaces at the 300K. Red lines represent fluctuations of energy with time, and blue lines represent fluctuations of temperature with time. (a-c) The PbI<sub>2</sub>/O, PbI<sub>2</sub>/SnO and PbI<sub>2</sub>/Sn interfaces. (d-f) The FAI/O, FAI/SnO and FAI/Sn interfaces.

=



**FIG. S3.** 2D maps of the ELF fields perpendicular to the FAI/O interface. One means complete electron localization, and zero means complete electron delocalization.



FIG. S4. Plane-averaged charge density difference along the Z direction coupling with Bader charge analysis in the (a) PbI<sub>2</sub>/O interface and (b) FAI/O interface.

\*The charge density difference  $\Delta \rho$  is given by:

$$\Delta \rho = \rho_{A+B} - \rho_A - \rho_B \tag{1}$$

Where  $\rho_{A+B}$ ,  $\rho_A$  and  $\rho_B$  are the plane-averaged charge density of the total heterostructures, freestanding A slab, and free-standing B slab, respectively.



FIG. S5. 2D map of the ELF field on the SnO surface of  $PbI_2/SnO$  interface with an O vacancy. One means complete electron localization, and zero means complete electron delocalization.



**FIG. S6.** Charge density difference coupling with Bader charge analysis on the  $PbI_2/SnO$  interface with an O vacancy. The value of the isosurface is  $1 \times 10^{-3}$  e per born<sup>3</sup>. Red represents gain electrons, and yellow represents lose electrons.



FIG. S7. Charge density at  $SnO_2$  conduction band minimum.



**FIG. S8.** Side views of the PbI<sub>2</sub>/O interfaces modified by the alkali metal elements [(a) Li, (b) Na, (c) K, (d) Rb and (e) Cs].

|            |   | 1 ( )              | •/ = ·      |                    |
|------------|---|--------------------|-------------|--------------------|
|            |   | FAPbI <sub>3</sub> | $SnO_2$     | $\mathrm{SnI}_4$   |
| This work  | Х | 6.415              | 4.832       | 6.757              |
|            | у | 6.415              | 4.832       | 6.757              |
|            | Z | 6.415              | 3.243       | 6.757              |
| Other work | Х | 6.352 <sup>1</sup> | $4.737^{2}$ | 6.686 <sup>3</sup> |
|            | у | 6.352              | 4.737       | 6.686              |
|            | Z | 6.352              | 3.185       | 6.686              |

Table SI. Calculated lattice parameters (in Å) of FAPbI<sub>3</sub>, SnO<sub>2</sub> and SnI<sub>4</sub> bulk.

Table SII. The relaxed lattice parameters (in Å) for the FAPbI<sub>3</sub>/SnO<sub>2</sub> interface models.

|   | PbI <sub>2</sub> /O, | PbI <sub>2</sub> /SnO | PbI <sub>2</sub> /Sn | FAI/O | FAI/SnO | FAI/Sn |
|---|----------------------|-----------------------|----------------------|-------|---------|--------|
| х | 6.39                 | 6.43                  | 6.42                 | 6.38  | 6.39    | 6.40   |
| У | 6.68                 | 6.68                  | 6.64                 | 6.66  | 6.69    | 6.64   |
| Z |                      | 60                    |                      |       |         |        |

Table SIII. Interface binding energies (in meV/Å<sup>2</sup>) of FAPbI<sub>3</sub>/SnO<sub>2</sub> interface.

| FAPbI <sub>3</sub> -SnO <sub>2</sub> | PbI <sub>2</sub> | FAI   |
|--------------------------------------|------------------|-------|
| 0                                    | -65.8            | -70.5 |
| SnO                                  | -4.7             | -4.2  |
| Sn                                   | -16.4            | -14.4 |

\*The interface binding energies  $\Delta E$  is given by:

$$\Delta E = \frac{E_{A+B} - E_A - E_B}{S} \tag{2}$$

Where S is the area of the interface,  $E_A$  is the energy of A slab,  $E_B$  is the energy of B slab and  $E_{A+B}$  is the total energy of the heterostructure in the heterostructure lattice.

(1) Slimi, B.; Mollar, M.; Assaker, I. B.; Kriaa, I.; Chtourou, R.; Marí, B. *Energy Procedia*. **2016**, *102*, 87-95.

(2) Dhage, S.; Samuel, V.; Pasricha, R.; Ravi, V. Ceram. Int. 2006, 32 (8), 939-941.

(3) Dawson, M.; Ribeiro, C.; Morelli, M. R. Mater. Sci. Semicond. Process. 2021, 132, 105908.