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FIG. S1. Representative snapshot of AIMD trajectory at 300 K. (a-c) The PbI2/O, PbI2/SnO and 
PbI2/Sn interfaces. (d-f) The FAI/O, FAI/SnO and FAI/Sn interfaces.



FIG. S2. AIMD simulations of the interfaces at the 300K. Red lines represent fluctuations of 
energy with time, and blue lines represent fluctuations of temperature with time. (a-c) The PbI2/O, 
PbI2/SnO and PbI2/Sn interfaces. (d-f) The FAI/O, FAI/SnO and FAI/Sn interfaces.
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FIG. S3. 2D maps of the ELF fields perpendicular to the FAI/O interface. One means complete 
electron localization, and zero means complete electron delocalization.



FIG. S4. Plane-averaged charge density difference along the Z direction coupling with Bader 
charge analysis in the (a) PbI2/O interface and (b) FAI/O interface.

*The charge density difference Δρ is given by:
                                            (1)Δ𝜌= 𝜌𝐴+ 𝐵 ‒ 𝜌𝐴 ‒ 𝜌𝐵

Where ρA+B, ρA and ρB are the plane-averaged charge density of the total heterostructures, free-
standing A slab, and free-standing B slab, respectively.



FIG. S5. 2D map of the ELF field on the SnO surface of PbI2/SnO interface with an O vacancy. 
One means complete electron localization, and zero means complete electron delocalization.



FIG. S6. Charge density difference coupling with Bader charge analysis on the PbI2/SnO interface 
with an O vacancy. The value of the isosurface is 1×10-3 e per born3. Red represents gain electrons, 
and yellow represents lose electrons.



FIG. S7. Charge density at SnO2 conduction band minimum.



FIG. S8. Side views of the PbI2/O interfaces modified by the alkali metal elements [(a) Li, (b) Na, 
(c) K, (d) Rb and (e) Cs].



Table SI. Calculated lattice parameters (in Å) of FAPbI3, SnO2 and SnI4 bulk.
FAPbI3 SnO2 SnI4

x 6.415 4.832 6.757
y 6.415 4.832 6.757This work
z 6.415 3.243 6.757
x 6.3521 4.7372 6.6863

y 6.352 4.737 6.686Other work
z 6.352 3.185 6.686

Table SII. The relaxed lattice parameters (in Å) for the FAPbI3/SnO2 interface models.

PbI2/O, PbI2/SnO PbI2/Sn FAI/O FAI/SnO FAI/Sn

x 6.39 6.43 6.42 6.38 6.39 6.40

y 6.68 6.68 6.64 6.66 6.69 6.64

z 60

Table SIII. Interface binding energies (in meV/Å2) of FAPbI3/SnO2 interface.
FAPbI3-SnO2 PbI2 FAI

O -65.8 -70.5
SnO -4.7 -4.2
Sn -16.4 -14.4

*The interface binding energies ΔE is given by:

                             (2)
Δ𝐸=

𝐸𝐴+ 𝐵 ‒ 𝐸𝐴 ‒ 𝐸𝐵
𝑆

Where S is the area of the interface, EA is the energy of A slab, EB is the energy of B slab and EA+B 

is the total energy of the heterostructure in the heterostructure lattice.
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