Supplemental Materials for "Strain-engineering induced topological phase

transitions and multiple valley states in Janus monolayer VCSiN₄"

Kang Jia¹, Xiao-Jing Dong¹, Sheng-Shi Li², Wei-Xiao Ji², and Chang-Wen Zhang^{1,2*}

- 1. School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, PRC
- 2. School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, PRC

Fig. S2 The considered magnetic configurations: panel (a) is for the FM configuration, and panel (b) is for the AFM configuration.

Table S1 The equilibrium lattice constants (*a*), space group, crystal symmetry, magnetic ground state, and formation energy of monolayers VC_2N_4 , $VCSiN_4$, and VSi_2N_4 .

	VC_2N_4	VCSiN ₄	VSi ₂ N ₄
<i>a</i> (Å)	2.57	2.77	2.89
space group	P6m2	<i>P</i> 3 <i>m</i> 1	P6m2
crystal symmetry	D_{3h}	C_{3v}	D_{3h}
magnetic ground state	FM	FM	FM
formation energy (eV)	2.63	3.10	3.81

Fig. S3 The electronic band structures by using GGA+U method with OOP magnetic anisotropy (U values vary from 0 to 3 eV).

Fig. S4 The electronic band structures by using HSE06+SOC with OOP magnetic anisotropy.

(a)

Fig. S5 (a) The total density of states (DOS) of the VCSiN₄. (b) The partial density of states (PDOS) of Si atoms. (c) The PDOS of C atoms. (d) The PDOS of N atoms. (e) The PDOS of V atoms.

The total and partial density of states (DOS) of the VCSiN₄ are calculated. As is exhibited in Fig. S5, we can observe that both CBM and VBM are mainly composed of $d_{x^2-y^2}/d_{xy}$ orbitals of V atoms and minority p_x/p_z orbitals of N atoms, which is consistent with that of orbital-resolved electronic band structure (see Fig. 3).

Fig. S6 The electronic band structures by using GGA at eight (f) different a/a_0 values.

Fig. S7 The electronic band structures by using GGA+SOC with OOP magnetic anisotropy at eight different a/a_0 values.

Fig. S8 The Berry curvature in the 2D BZ with (a) $a/a_0 = 1.03$, (b) $a/a_0 = 1.0415$, and (c) $a/a_0 = 1.05$. The Berry curvature along the high symmetry points with (d) $a/a_0 = 1.03$, (e) $a/a_0 = 1.0415$, and (f) $a/a_0 = 1.05$.

Fig. S9 The global band gaps with SOC (IP magnetic anisotropy) as a function of a/a_0 .

Fig. S10 The electronic band structures by using GGA+SOC with IP magnetic anisotropy at eight different a/a_0 values.