Exploration of 3D NiCu-layered double hydroxide flowers tailored on biomass-derived N-doped carbon stick electrode as a binder-less enzyme-free urea sensing probe

Ameer Farithkhan^a, N. S. K. Gowthaman^b, Hong Ngee Lim^{c,*} and S. Meenakshi^{a,*}

^aDepartment of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram 624 302, Tamil Nadu, India

^bSchool of Engineering, Monash University, Bandar Sunway, Selangor 47500, Malaysia

^cDepartment of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

* Corresponding Authors:

- H.N. Lim, Email: hongngee@upm.edu.my, Tel.: +60 163301609
- S. Meenakshi, Email: sankaranmeenakshi2014@gmail.com, Tel.: +91 9443838121

Fig. S1. (A) SEM image of NC-87 and its elemental mapping of (B) C, (C) N, (D) O, (E) Ni and (F) Cu.

Fig. S2. EDAX patterns of NC-87 sensor.

Fig. S3. SEM images of (A) NC-100, (B) NC-87, (C) NC-75, (D) NC-50 and (E) NC-0.

Fig. S4. Reproducibility (A, B) and stability (C) of NC-87 electrodes in 0.1 M KOH containing 2 mM urea at a scan rate of 50 mV s⁻¹.

Table S1.	Comparison	of the perfor	mance of N	VF-87 elec	ctrode towa	rds urea	sensing	with the
reported p	apers							

Sensor Materials	Туре	Linear	LODA	Sensitivity	Ref.
		range (mM)	(mM)		
Gr ^a -PANI ^b /GCE ^c	Enzyme-free	0.01-0.2	0.0059	226.9 μA μm ⁻¹ cm ⁻²	(1)
Urs ^d -PANi-nafion/Au	Urease	1-10	1	$4.2 \ \mu A \ mM^{-1} \ cm^{-2}$	(2)
PPy ^e /GCE	Enzyme-free	0.08-1.36	0.04	1.11 μA μM ⁻¹ cm ⁻²	(3)
SnO ₂ film/Al sheet	Enzyme-free	1-20	0.6	18.9 μA mM ⁻¹	(4)
PANi/CdS-QDs ^f /PDA ^g -Ni	Enzyme-free	0.1-10	0.047	-	(5)
AgNP ^h -deposited commercial Au–Pd	Enzyme-free	1-8	0.14	9.212 μA mM ⁻¹	(6)
Urs-GLDH ⁱ /GOS ^j	Urease and glutamate	3.3-19.9	2.1	2.6 mA mM ⁻¹ cm ⁻²	(7)
NC-LDH@NCSE	Enzyme-free	0.02-5.0	0.033	21 mA mM ⁻¹ cm ⁻²	This

^Alimit of detection; ^agraphene; ^bpolyaniline; ^cglassy carbon electrode; ^durease; ^epolypyrrole; ^fCdS-quantum dots; ^gNi-2,3-pyrazine dicarboxylic acid; ^hnanoparticles; ⁱglutamate dehydrogenase; ⁱgraphene oxide–SiO₂ composite electrode.

REFERENCES

(1) R. Sha, K. Komori, S. Badhulika, Graphene-polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea, *Electrochim. Acta*, 2017, **233**, 44-51.

(2) Y.C. Luo, J.S. Do, Urea biosensor based on PANI(urease)-Nafion[®]/Au composite electrode, *Biosens. Bioelectron*, 2004, **20**, 15-23.

(3) S. Mondal, M.V. Sangaranarayanan, A novel non-enzymatic sensor for urea using a ploypyrrole-coated platinum electrode, *Sens. Actuators B Chem.*, 2013, **177**, 478-486.

(4) S.G. Ansari, H. Fouad, H.S. Shin, Z-A. Ansari, Z-A, Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique, *Chem. Biol. Interact.*, 2015, **242**, 45-49.

(5) A. Azadbakht, M.B. Gholivand, Covalent attachment of Ni-2,3-pyrazine dicarboxylic acid onto gold nanoparticle gold electrode modified with penicillamine- CdS quantum dots for electrocatalytic oxidation and determination of urea, *Electrochim. Acta*, 2014, **124**, 9-21.

(6) J. Liu, R.S. Moakhar, A.S. Perumal, H.N. Roman, S. Mahshid, S. Wachsmann-Hogiu, An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection, *Sci. Rep.*, 2020, **10**, 9527-9538.

(7) S. Abraham, V. Ciobota, S. Srivastava, S.K. Srivastava,
R.K. Singh, J. Dellith, B.D. Malhotra, M. Schmitt, J. Popp, A. Srivastava, Mesoporous silica
particle embedded functional graphene oxide as an efficient platform for urea biosensing, *Anal. Methods*, 2014, 6, 6711-6721.