Experimentally Validated Machine Learning Predictions of Ultralow Thermal

Conductivity for SnSe Materials

N.K. Barua,^{a§} A. Golabek,^{a§} A.O. Oliynyk,^b and H. Kleinke^{a*}

*Corresponding author

§Authors made equal contributions

^a Department of Chemistry, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada

E-mail: kleinke@uwaterloo.ca

^b Department of Chemistry, Hunter College, City University of New York, New York 10065, NY,

United States

Table	Description	Page
Information		number
Figure S1	Schematic diagram of the machine learning workflow.	S-3
Figure S2	Extended list of features ranking based on importance score as	S-4
	suggested by XGBoost.	
Figure S3	Schematic diagram of five k-fold cross validation.	S-4
Figure S4	Scatter plot of the linear regression model prediction of the test set.	S-5
Figure S5	Scatter plots of ML models prediction of the training set.	S-6
Figure S6	Percent residual error plots of ML models in combined five validation	S-7
	sets.	
Figure S7	Scatter plots of ML models prediction of the overall validation set.	S-8
Figure S8	Scatter plots of ML models prediction of the experimental test set.	S-9
Figure S9	Scatter plots of temperature vs. measured and predicted κ values of	S-10
	(a) $Na_{0.032}Au_{0.015}Sn_{0.963}Se$, (b) $Na_{0.033}Ag_{0.015}Sn_{0.961}Se$, and (c)	
	$Sn_{1.002}Se_{0.900}Br_{0.100}$ in the experimental test set.	
Figure S10	Scatter plots of temperature vs. measured and predicted κ values of (a) Cl- and (b) Br-doped SnSe in the experimental test set.	S-11
Figure S11	Scatter plots of XGBoost's prediction of the revised training set and the revised test set (T2).	S-11
Table S1	List of compositions used in the training set.	S-12
Table S2	Occurrences of elements in the compositions in the training dataset.	S-14
Table S3	Features used in the training dataset prior to the implementation of	S-15
	feature selection methods.	
Table S4	Weighted features mathematical calculations using NumPy.	S-21
Table S5	Hyperparameters used in feature selection methods.	S-22
Table S6	Hyperparameters used in different ML models during model selection	S-23
	step.	
Table S7	Regression metrics of ML models of validation sets from k-fold.	S-25
Table S8	Regression metrics of ML models in training, validation, and test set.	S-25
	References	S-26

Table S0. Table of contents in the supplementary information.

^b Support Vector Regression

^c k-Nearest Neighbor

Figure S1. Schematic diagram of the machine learning workflow for this study.¹

Figure S2. Extended list of features ranking based on importance score as suggested by XGBoost.

Original training dataset					
ValidationSet 1	ValidationSet 1 TrainingSet 1				
TrainingSet 2	ValidationSet 2 TrainingSet 2				
TrainingSet 3		ValidationSet 3	TrainingSet 3		
TrainingSet 4			ValidationSet 4	TrainingSet 4	
TrainingSet 5 ValidationSet				ValidationSet 5	

Figure S3. Schematic diagram of five k-fold cross validation.²

Figure S4. Scatter plot of the linear regression model prediction of the test set.

Figure S5. Scatter plots of ML models prediction of the training set.

Figure S6. Percent residual error plots of ML models in combined five validation sets.³

Figure S7. Scatter plots of ML models prediction of the overall validation set.

Figure S8. Scatter plots of ML models prediction of the experimental test set.

Figure S9. Scatter plots of temperature vs. measured and predicted κ values of (a) Na_{0.033}Ag_{0.015}Sn_{0.961}Se, (b) Na_{0.032}Au_{0.015}Sn_{0.963}Se, and (c) Sn_{1.002}Se_{0.900}Br_{0.100} in the experimental test set.

Figure S10. Scatter plots of temperature vs. measured and predicted κ values of (a) Cl- and (b) Br-doped SnSe in the experimental test set.

Figure S11. Scatter plots of XGBoost for prediction of the revised training set and the revised test set (T2).

Composition	Type of Dopant
Sn0.997Se1	p-type
Cu0.021Sn0.983Se1	p-type
Sn1.006Se1	p-type
Sn1.002Se1	p-type
Cu0.005Sn0.998Se1	p-type
Cu0.01Sn0.989Se1	p-type
Cu0.019Sn0.979Se1	p-type
Cu0.041Sn0.958Se1	p-type
Cu0.011Sn0.991Se1	p-type
Cu0.022Sn0.98Se1	p-type
Cu0.062Sn0.941Se1	p-type
Cu0.078Sn0.918Se1	p-type
Cu0.08Sn0.919Se1	p-type
Sn0.999Se1	p-type
Cu0.009Sn0.999Se1	p-type
Na0.012Cu0.008Sn0.994Ge0.025Se0.95S0.05	p-type
Na0.01Cu0.011Sn0.978Se1	p-type
Li0.01Cu0.009Sn0.974Se1	p-type
Na0.01Ag0.01Sn0.998Se1	p-type
Na0.01Ag0.011Sn0.974Se1	p-type
Na0.01Sn0.976Au0.01Se1	p-type
Na0.025Cu0.005Sn0.969Se1	p-type
Na0.03Sn0.969Se1	p-type
Na0.09Cu0.012Ag0.01Sn0.971Se1	p-type
Na0.021Cu0.005Sn0.974Se1	p-type
Na0.03Sn0.97Se1	p-type
Na0.01Ag0.01Sn0.981Se1	p-type
Na0.01Cu0.01Sn0.979Se1	p-type
Na0.01Cu0.01Ag0.01Sn0.98Se1	p-type
Na0.01Cu0.01Sn0.98Se1	p-type
Na0.029Cu0.002Sn0.969Se1	p-type
Na0.028Cu0.01Sn0.963Se1	p-type
Na0.033Cu0.016Sn0.961Se1	p-type
Na0.025Cu0.006Sn0.968Se1	p-type
Na0.026Cu0.01Sn0.961Se1	p-type
Na0.021Cu0.003Sn0.978Se1	p-type
Na0.019Cu0.009Sn0.972Se1	p-type
Na0.02Cu0.015Sn0.965Se1	p-type

Table S1. List of compositions used in the training set.

Na0.014Cu0.006Sn0.98Se1	p-type
Na0.014Cu0.012Sn0.973Se1	p-type
Na0.011Cu0.003Sn0.99Se1	p-type
Na0.011Cu0.008Sn0.978Se1	p-type
Na0.007Cu0.015Sn0.977Se1	p-type
Sn1.001Se1	p-type
Na0.01Ag0.01Sn0.98Se1	p-type
Na0.01Cu0.002Ag0.006Sn0.97Ge0.001Se1	p-type
Cu0.015Sn0.985Se1	p-type
Cu0.007Sn0.992Se1	p-type
Na0.015Sn0.985Se1	p-type
Na0.013Cu0.002Sn0.986Se1	p-type
Na0.03Cu0.008Sn0.962Se1	p-type
Sn0.996Bi0.006Se0.974Br0.026	n-type
Sn0.997Bi0.005Se0.97Br0.03	n-type
Sn0.988Bi0.01Se0.98Br0.02	n-type
Sn0.984Bi0.021Se0.99Br0.01	n-type
Sn0.982Bi0.026Se0.994Br0.006	n-type
Sn0.965Bi0.03Se0.994Br0.006	n-type
Sn0.987Bi0.007Se0.984Br0.016	n-type
Sn0.991Bi0.004Se0.992Br0.008	n-type
Sn0.983Bi0.006Se0.977Br0.023	n-type
Sn0.985Bi0.005Se0.98Br0.02	n-type
Sn0.99Bi0.005Se0.989Br0.011	n-type
Sn0.995Bi0.004Se0.992Br0.008	n-type
Sn0.976Bi0.011Se0.977Br0.023	n-type
Sn0.995Se0.959Br0.041	n-type
Sn0.964Bi0.041Se1	n-type
Sn0.999Se0.94Br0.06	n-type
Sn0.94Bi0.06Se1	n-type
Sn0.972Bi0.029Se0.97Br0.03	n-type
Sn0.982Bi0.02Se0.955Br0.045	n-type
Sn0.952Bi0.045Se0.98Br0.02	n-type
Sn0.953Bi0.046Se0.955Br0.045	n-type
Sn0.94Bi0.061Se0.939Br0.061	n-type
Na0.012Cu0.008Sn0.979Se1	p-type
Sn0.997Se1	p-type

75 samples, 10 temperatures -> 750 data

Composition	Binary	Ternary	Quaternary	Quinary	Senary	Total
Elements						
Sn	55	205	471	18	27	776
Se	55	205	471	18	27	776
Li		—	9			9
Na		48	288	18	27	381
Cu		118	238	18	27	401
Ag		—	49	18	8	75
Au			10			10
Ge					27	27
Bi		19	174			193
S	—				19	19
Br	—	20	174			194
Cl						

Table S2. Occurrences of elements in the heterogeneous compositions in training dataset.

Table S3. Features used in the training dataset prior to the implementation of feature selection methods.

Sl. No	Feature	Feature explanation		
1	composition	chemical formula		
2	<i>p</i> -type/ <i>n</i> -type	type of semiconductor		
3	at. % ratio	ratio of all the cations with the anions in a composition		
	(cation/anion)			
4	added dopants sum	sum of the dopant elements % atomic. For example, for		
		$Na_{0.01}Cu_{0.02}Sn_{0.97}Se: 0.01 + 0.02 = 0.03; Sn_{0.9}Bi_{0.1}Se_{0.95}Br_{0.05}:$		
		0.1 + 0.05 = 0.15. Alloying elements like Ge on the Sn site are		
		not included.		
5	site occ. (Sn)	occupancy of the cations in the Sn site subtracting the selenium		
		in the composition		
6	molar mass	molar mass of the composition		
7	sum alloying	summation of the alloying elements. For example:		
		$Na_{0.012}Cu_{0.008}Sn_{0.994}Ge_{0.025}Se_{0.950}S_{0.050}: 0.025 + 0.05 = 0.075.$		
		Doping elements are not included.		
8	Cp (3R)	calculated heat capacity based on Dulong-Petit		
9	relative mass (theor.)	molar mass of the composition divided by the molar mass of		
		pure SnSe		
10	manual estimator of	formula (Sn type × # of reductions + cooling type)/(sum of		
	performance	added dopants + % theoretical density). Sn type values are 1 for		
		powder, 2 for chunks, 3 for purified; cooling type is 3 for		
		furnace, 2 for air, 1 for water, and 0 for NA (not applicable).		
11	no. of elements	number of the elements in the material		
12	Na	atomic amount of a given element in the formula.		
13	Li			
14	Cu	For example:		
15	Ag	$Na_{0.030}Sn_{0.969}Se_1$ implies 0.03 for the Na column 0.03, 0.969 for		
16	Sn	Sn, and 1 for Se. The rest of the elements are set to 0.		
17	Ge			
18	Au			
19	Bi			
20	Se			
21	S			
22	Br			
23	Cl			
24	Sn purified	physical form of Sn.		
		1 means Sn was purified.		

		0 means Sn was not purified.		
		Purified means chunks of Sn have been subjected to the		
		purification process ⁴ (repeated melting and cleaning).		
25	Sn chunks	chunks mean Sn chunks that have not been purified.		
26	Sn powder	powder is powder form of Sn.		
27	melting temperature	temperature of the furnace for melting Sn		
	(K)			
28	melting time (min)	time taken for melting Sn		
29	no quench	quenching of the reaction tube not performed		
30	furnace quench	quenched reaction tube in the furnace		
31	air quench	quenched reaction tube by air cooling on a firebrick		
32	water quench	quenched by placing the reaction tube in water bath		
33	melt- and ball milling-	composition synthesized using melting or by ball milling		
	synthesis (1/0)			
34	ball milling speed	speed of the ball milling process		
	(rpm)			
35	ball milling time (min)	time taken for the ball milling process		
36	reduced	whether SnSe was reduced by reduction process		
37	number of reductions	number of reduction cycles undertaken for SnSe to remove		
		oxides		
38	reduction prep	whether SnSe was crushed using mortar/pestle or ball milled		
	(1=mortar/pestle/0=ball	before the reduction process		
	milled)			
39	mixture of reduction	mixture of gas ($2=5\%$ H ₂ /Ar, $1=7\%$ H ₂ /N ₂ , $0=$ NA) used for the		
	gas	reduction process		
40	H ₂ /Ar reduction gas	mixture of gas used during the reduction process		
41	H ₂ /N ₂ reduction gas			
42	no reduction gas			
43	reduction temp (<i>K</i>)	maximum temperature of the furnace used for the reduction		
		process		
44	reduction time (min)	the time used for the reduction process		
45	annealing	If the sample was annealed		
46	annealing (1=before	whether the annealing process was completed before hot		
	hot press/0=after hot	pressing in the powdered form—1 or after hot pressing in the		
	press)	pellet form—0		
47	annealing time (min)	the time used for annealing at the maximum temperature		
48	annealing temp (K)	temperature at which the sample was annealed		
49	ball milling or grinding	whether the sample was ball milled or ground by hand using the		
	before hot press	mortar and pestle		

50	sieved before hot press	whether the sample was sieved to $< 63 \ \mu m$ before hot pressing
51	hot press temp (K)	maximum temperature of the hot-pressing process.
52	hot press ramp time	time for the sample to reach the maximum temperature in the
	(min)	hot press
53	hot press hold time	time for the sample at the maximum temperature in the hot
	(min)	press
54	hot press pressure	pressure used for sintering the sample in the hot press
	(MPa)	
55	density (g/cm^3)	density of the sample measured in the pellet form
56	lowest total thermal	minimal thermal conductivity of the sample
	cond (W/m/K)	
57	measurement temp (K)	temperature points when measuring thermal diffusivity
58	EN (Pauling) - Na	the value is calculated by multiplying the atomic amount of an
59	EN (Pauling) - Li	element in the formula with the Pauling electronegativity of the
60	EN (Pauling) - Cu	element.
61	EN (Pauling) - Ag	
62	EN (Pauling) - Sn	
63	EN (Pauling) - Ge	
64	EN (Pauling) - Au	
65	EN (Pauling) - Bi	
66	EN (Pauling) - Se	
67	EN (Pauling) - S	
68	EN (Pauling) - Br	
69	EN (Pauling) - Cl	
70	EN (Pauling) - varn	the variation is calculated by applying variance to all the
		elements with weighted Pauling electronegativity calculation in
		the composition (Table S3 (b))
71	EN (Pauling) - sum	The sum is calculated by adding to all the elements with
		weighted Pauling electronegativity calculation in the
		composition (Table S3 (b)).
72	EN (Pauling) - max	The maximum is calculated by taking the maximum weighted
		value from all the elements with weighted Pauling
		electronegativity in the composition (Table S3 (b)).
73	EN (Pauling) - avg	The average is calculated by taking the average weighted value
		from all the elements with weighted Pauling electronegativity
		present in the composition (Table S3 (b)).
74	EN (Pauling) - min	The minimum is calculated by taking the minimum weighted
		value from all the elements with weighted Pauling
		electronegativity in the composition (Table S3 (b)).

75	EN (Pauling) - diff	The difference is calculated by subtracting EN (Pauling) – max
		with EN (Pauling) - min (Table S3 (b)).
76	EN (Ghosh) - Na	The value is calculated by multiplying the atomic amount of an
77	EN (Ghosh) - Li	element in composition with the Ghosh electronegativity of the
78	EN (Ghosh) - Cu	element.
79	EN (Ghosh) - Ag	
80	EN (Ghosh) - Sn	
81	EN (Ghosh) - Ge	
82	EN (Ghosh) - Au	
83	EN (Ghosh) - Bi	
84	EN (Ghosh) - Se	
85	EN (Ghosh) - S	
86	EN (Ghosh) - Br	
87	EN (Ghosh) - Cl	
88	EN (Ghosh) - varn	
89	EN (Ghosh) - sum	
90	EN (Ghosh) - max	
91	EN (Ghosh) - avg	
92	EN (Ghosh) - min	
93	EN (Ghosh) - diff	
94	IE - Na	The value is calculated by multiplying the atomic amount of an
95	IE - Li	element in composition with the Ionization energy of the
96	IE - Cu	element.
97	IE - Ag	
98	IE - Sn	
99	IE - Ge	
100	IE - Au	
101	IE - Bi	
102	IE - Se	
103	IE - S	
104	IE - Br	
105	IE - Cl	
106	IE - varn	
107	IE - sum	
108	IE - max	
109	IE - avg	
110	IE - min	
111	IE - diff	
112	at. weight - Na	

113	at. weight - Li	The value is calculated by multiplying the atomic amount of an
114	at. weight - Cu	element in composition with the atomic weight of the element.
115	at. weight - Ag	
116	at. weight - Sn	
117	at. weight - Ge	
118	at. weight - Au	
119	at. weight - Bi	
120	at. weight - Se	
121	at. weight - S	
122	at. weight - Br	
123	at. weight - Cl	
124	at. weight - varn	
125	at. weight - sum	
126	at. weight - max	
127	at. weight - avg	
128	at. weight - min	
129	at. weight - diff	
130	vec - Na	The value is calculated by multiplying the atomic amount of an
131	vec - Li	element in composition with the number of valence electron of
132	vec - Cu	the element.
133	vec - Ag	
134	vec - Sn	
135	vec - Ge	
136	vec - Au	
137	vec - Bi	
138	vec - Se	
139	vec - S	
140	vec - Br	
141	vec - Cl	
142	vec - varn	
143	vec - sum	
144	vec - max	
145	vec - avg	
146	vec - min	
147	vec - diff	
148	r(cov) - Na	The value is calculated by multiplying the atomic amount of an
149	r(cov) - Li	element in composition with the covalent radius of the element.
150	r(cov) - Cu	
151	r(cov) - Ag	

152	r(cov) - Sn
153	r(cov) - Ge
154	r(cov) - Au
155	r(cov) - Bi
156	r(cov) - Se
157	r(cov) - S
158	r(cov) - Br
159	r(cov) - Cl
160	r(cov) - varn
161	r(cov) - sum
162	r(cov) - max
163	r(cov) - avg
164	r(cov) - min
165	r(cov) - diff

Example	Weighted elemental	Formula applied	Weighted
	stoichiometry features		value
	(WESF)		
Sn _{0.997} Se	EN (Pauling) – Sn	Electronegativity of $Sn \times 0.9973^{a}$	1.954719
$Na_{0.021}Cu_{0.005}Sn_{0.974}Se$	r(cov) – Sn	Covalent radius of Sn × 0.9741 ^a	1.373453
Na _{0.010} Ag _{0.010} Sn _{0.980} Se	vec - Ag	Valence electrons of Ag \times 0.0100 ^a	0.109357
Sn _{0.996} Bi _{0.006} Se _{0.974} Br _{0.026}	IE – Br	Ionization energy of Br \times 0.026	0.306568

Table S4. Weighted features mathematical calculations.⁵

^aCalculated stoichiometry after weighing.

Example	NumPy	Formula applied [*]	Weighted
	Operation		value
Sn0.972Bi0.029Se0.97Br0.03	Variance	Var([WESF(Sn),,WESF(Br)])	0.670371
$Na_{0.013}Cu_{0.002}Sn_{0.986}Se$	Sum	Sum([WESF (Na),, WESF(Se)])	4.496973
Cu _{0.015} Sn _{0.985} Se	Maximum	Max([WESF(Cu),,WESF(Se)])	2.55
$Na_{0.026}Cu_{0.01}Sn_{0.961}Se$	Minimum	Min([WESF(Na),,WESF(Se)])	0.019547
$\boxed{Na_{0.012}Cu_{0.008}Sn_{0.994}Ge_{0.025}Se_{0.95}S_{0.05}}$	Average	Ave([WESF(Na),,WESF(S)])	0.762899
Na _{0.03} Sn _{0.969} Se	Difference	Diff(Max – Min)	2.52202

*With respect to Pauling electronegativity scale.

[] = array

ML Algorithm	Hyperparameter	Value used
Lasso	alpha	0.001
	max_iter	1000
	random_state	none
	selection	cyclic
	base_score	0.5
	booster	gbtree
	callbacks	none
	colsample_bylevel	1
	colsample_bynode	1
	colsample_bytree	1
	early_stopping_rounds	none
	enable_categorical	false
	eval_metric	none
	gamma	0
	gpu_id	1
	grow_policy	depthwise
	importance_type	none
	interaction_constraints	none
VCPoost (VCPPogragor)	learning_rate	0.3
AGBoost (AGBRegressor)	max_bin	256
	max_cat_to_onehot	4
	max_delta_step	0
	max_depth	3
	max_leaves	0
	min_child_weight	1
	missing	nan (not a number)
	monotone_constraints	none
	n_estimators	100
	n_jobs	0
	num_parallel_tree	1
	predictor	auto
	random_state	0
	reg_alpha	0
	reg_lambda	3

Table S5. Hyperparameters	used in	feature selecti	on methods.
---------------------------	---------	-----------------	-------------

ML Algorithm	Hyperparameter	Value used
	base_score	0.5
	booster	gbtree
	callbacks	none
	colsample_bylevel	1
	colsample_bynode	1
	colsample_bytree	1
	early_stopping_rounds	none
	enable_categorical	false
	eval_metric	none
	gamma	0
	gpu_id	1
	grow_policy	depthwise
	importance_type	none
	interaction_constraints	none
VCD a act (VCDD a cross or)	learning_rate	0.3
XGBoost (XGBRegressor)	max_bin	256
	max_cat_to_onehot	4
	max_delta_step	0
	max_depth	3
	max_leaves	0
	min_child_weight	1
	missing	nan (not a number)
	monotone_constraints	none
	n_estimators	100
	n_jobs	0
	num_parallel_tree	1
	predictor	auto
	random_state	0
	reg_alpha	0
	reg_lambda	3
	bootstrap	true
	n_estimators	100
	max_depth	6
	random_state	0
	verbose	0
Random Forest	n_jobs	none
(RandomForestRegressor)	max_features	1.0

Table S6. Hyperparameters used in different ML models during model selection.

	min_weight_fraction_leaf	0.0
	min_samples_split	2
	min_samples_leaf	1
	n_neighbors	4
	algorithm	auto
	weights	uniform
k-NN (neighbors)	leaf_size	30
	р	2
	metric	minkowski
	n_jobs	none
SVM (SVR)	kernel	rbf
	С	80
	epsilon	0.1
	gamma	scale
	degree	3

Metrics	Validation Set							
	R^2							
	<i>k</i> -fold	<i>k</i> -fold	<i>k</i> -fold	<i>k</i> -fold	<i>k</i> -fold	<i>k</i> -fold		
Model	set 1	set 2	set 3	set 4	set 5	average		
XGboost	0.93	0.95	0.95	0.92	0.95	0.94		
RF	0.81	0.83	0.87	0.82	0.83	0.83		
SVR	0.85	0.85	0.87	0.84	0.84	0.85		
<i>k</i> -NN	0.79	0.81	0.81	0.8	0.72	0.79		
	<i>RMSE</i> (W m ⁻¹ K ⁻¹)							
XGboost	0.06	0.05	0.05	0.06	0.04	0.05		
RF	0.10	0.10	0.08	0.09	0.08	0.09		
SVR	0.09	0.09	0.08	0.08	0.08	0.07		
<i>k</i> -NN	0.10	0.10	0.10	0.10	0.10	0.10		
	$MAE (W m^{-1}K^{-1})$							
XGboost	0.04	0.04	0.04	0.04	0.03	0.04		
RF	0.07	0.06	0.06	0.06	0.06	0.06		
SVR	0.07	0.07	0.06	0.06	0.06	0.06		
<i>k</i> -NN	0.07	0.07	0.07	0.07	0.07	0.07		

Table S7. Metrics of ML models of validation sets from k-fold.⁶

Table S8. Metrics of ML models in training, validation, and test set.⁶

Metrics	Training			Validation			Test of new data		
	R^2	RMSE	MAE	R^2	RMSE (W	MAE	R^2	RMSE	MAE
		(W m ⁻	(W m ⁻		$m^{-1}K^{-1}$)	(Wm⁻		(W m ⁻	(W m ⁻
Model		$^{1}K^{-1}$)	$^{1}K^{-1}$)			${}^{1}K^{-1}$)		$^{1}K^{-1}$)	${}^{1}K^{-1}$)
XGboost	0.99	0.03	0.02	0.94	0.05	0.04	0.84	0.07	0.05
RF	0.92	0.06	0.05	0.84	0.09	0.06	0.81	0.07	0.05
SVR	0.88	0.07	0.06	0.85	0.09	0.07	0.70	0.19	0.15
<i>k</i> -NN	0.88	0.07	0.05	0.79	0.10	0.07	0.64	0.13	0.10

References:

- 1 J. Wei, X. Chu, X. Y. Sun, K. Xu, H. X. Deng, J. Chen, Z. Wei and M. Lei, *InfoMat*, 2019, 1, 338–358.
- 2 T. T. Wong, *Pattern Recognit.*, 2015, **48**, 2839–2846.
- 3 A. Y. T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J. Brgoch, K. A. Persson and T. D. Sparks, *Chem. Mater.*, 2020, **32**, 4954–4965.
- 4 C. Zhou, Y. K. Lee, Y. Yu, S. Byun, Z. Z. Luo, H. Lee, B. Ge, Y. L. Lee, X. Chen, J. Y. Lee, O. Cojocaru-Mirédin, H. Chang, J. Im, S. P. Cho, M. Wuttig, V. P. Dravid, M. G. Kanatzidis and I. Chung, *Nat. Mater.*, 2021, 20, 1378–1384.
- 5 C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke and T. E. Oliphant, *Nature*, 2020, **585**, 357–362.
- 6 D. Chicco, M. J. Warrens and G. Jurman, *PeerJ Comput. Sci.*, 2021, 7, e623/1-24.