Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Continuous Synthesis of All-inorganic Low-dimensional Bismuth-based Metal

Halides Cs₄MnBi₂Cl₁₂ from Reversible Precursors Cs₃BiCl₆ and Cs₃Bi₂Cl₉ under

Phase Engineering

Chunli Zhao¹, Yuan Gao^{1,2*}, Jianbei Qiu^{1,2*}

¹Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

²Key Lab. of Advanced Materials of Yunnan Province, Kunming 650093, China

Corresponding Author

*E-mail: Yuan Gao (1251719335@qq.com); Jianbei Qiu (qiu@kust.edu.cn).

Figure S1. (a) Crystal structure of Cs_3BiCl_6 . (b) XRD pattern of Cs_3BiCl_6 compared to the simulated pattern (PDF#22-0171). (c) Crystal structure of $Cs_3Bi_2Cl_9$. (d) XRD pattern of $Cs_3Bi_2Cl_9$ compared to the simulated pattern (PDF#70-0990).

Figure S2. The XRD patterns of Cs_3BiCl_6 / $Cs_3Bi_2Cl_9$ and their continuous phase transformation after adding CsCl and BiCl_3, respectively.

Figure S3. XRD patterns of Cs_3BiCl_6 as precursor, after adding $CsCl+MnCl_2.H_2O+BiCl_3$, and synthesized $Cs_4MnBi_2Cl_{12}$ phosphor.

Figure S4. XRD patterns of $Cs_3Bi_2Cl_9$ as precursor, after adding $CsCl+MnCl_2.H_2O$, and synthesized $Cs_4MnBi_2Cl_{12}$ phosphor.

Figure S5. XPS spectra of Mn in Cs₄MnBi₂Cl₁₂ phosphor.

Figure S6. (a) The EDS spectrum of Cs_3BiCl_6 . (b) The EDS spectrum of $Cs_3Bi_2Cl_9$. (c) The EDS spectrum of $Cs_4MnBi_2Cl_{12}$, respectively.

Figure S7. Selected diffraction peaks near 23.5° of $Cs_4Mn_{1-x}Cd_xBi_2Cl_{12}$ (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0).

Figure S8. The measurement results of the optimal PLQY of (a) $Cs_4MnBi_2Cl_{12}$ and (b) $Cs_4Mn_{0.3}Cd_{0.7}Bi_2Cl_{12}$.

Figure S9. PL decay curves by monitoring Visible emission ($\lambda_{em} = 950 \text{ nm}$) for the Cs₄MnBi₂Cl₁₂ and Cs₄Mn_{0.3}Cd_{0.7}Bi₂Cl₁₂ phosphor.

Figure S10. Temperature-dependent PL spectra for Cs₄Mn_{0.3}Cd_{0.7}Bi₂Cl₁₂.

Figure S11. Schematic energy-level diagram illustrating the possible energy-transfer mechanism in $Cs_4Mn_{0.3}Cd_{0.7}Bi_2Cl_{12}$ sample under UV excitation.

Figure S12. Thermogravimetric analysis graph of $Cs_4Mn_{0.3}Cd_{0.7}Bi_2Cl_{12}$.

Figure S13. XRD patterns of the fresh $Cs_4Mn_{0.3}Cd_{0.7}Bi_2Cl_{12}$ sample and after exposing in air for 50 days.

Figure S14. The (a) XRD patterns and (b) photoluminescence of thermal stability of the $Cs_4Mn_{0.3}Cd_{0.7}Bi_2Cl_{12}$ under 373 K heat.