Supporting Information

Bilayer Chlorophyll-Based Bio-Photodetector Based on Z-Type Charge Transfer Process

Yuting Sun^a, Ziyan Liu^a, Yuanlin Li^a, Tianfu Xiang^a, Aijun Li^a, Yuhong He^b, Haotong Wei^{b,c}, Shin-ichi Sasaki^{d,e}, Hitoshi Tamiaki^d, and Xiao-Feng Wang^{a,*}

^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China
^bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
^cOptical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130012, P.R. China
^dGraduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
^eDepartment of Medical Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-

Science and Technology, Nagahama, Shiga 526-0829, Japan

*Corresponding author. E-mail: xf_wang@jlu.edu.cn

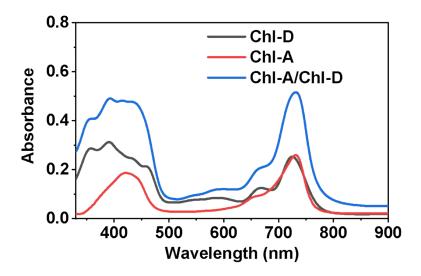
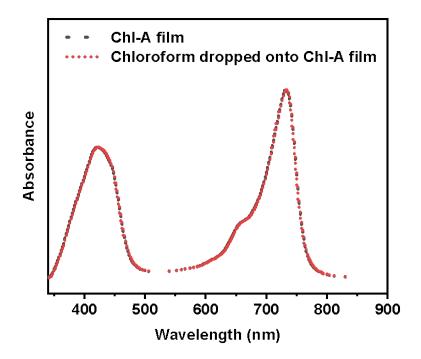
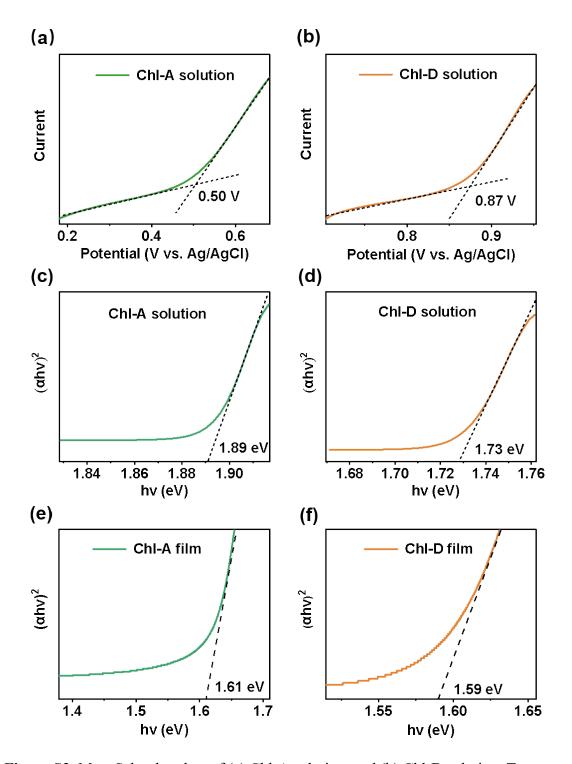




Figure S1. The comparison of absorption spectra of Chl-D film, Chl-A film, and Chl-

A/Chl-D film.

Figure S2. Absorption spectra of Chl-A film (black dotted line) and the already formed Chl-A film with chloroform dropped onto it (red dotted line) (PS: the operation is the same as that for the device fabrication, except without Chl-D spin-coated from chloroform).

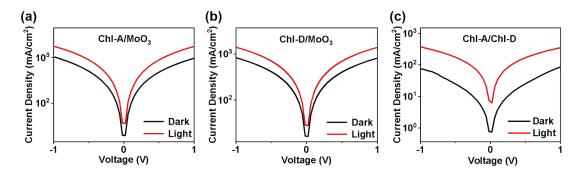


Figure S3. Mott-Schottky plots of (a) Chl-A solution, and (b) Chl-D solution. Tauc plots of (c) Chl-A solution, and (d) Chl-D solution. Tauc plots of (e) Chl-A film, and (f) Chl-D film.

Chls	E_{g}^{opt} (eV)	HOMO (eV)	LUMO (eV)
Chl-A	1.61	-4.95	-3.34
Chl-D	1.59	-5.48	-3.89

Table S1. Energy levels of Chl-A film and Chl-D film.

^{a)} Band gap E_g are derived from the absorption spectra: $E_g (eV) = 1240 / \lambda$ (nm). HOMO levels were obtained from previous studies.¹ LUMO levels are estimated from HOMO + E_g .

Figure S4. J–V curves of (a) ITO/Chl-A/MoO₃/Ag, (b) ITO/Chl-D/MoO₃/Ag, and (c) ITO/Chl-A/Chl-D/Ag device in light (using a solar simulator with an optical power of 100 mW/cm²) and darkness.

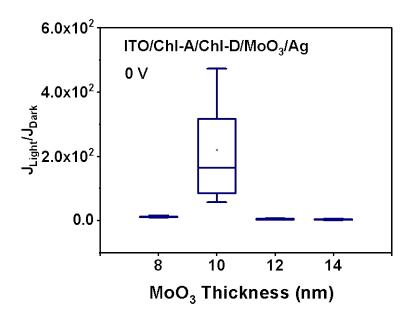


Figure S5. J_{Light}/J_{Dark} statistics of the ITO/Chl-A/Chl-D/MoO₃/Ag device at various MoO₃ thickness.

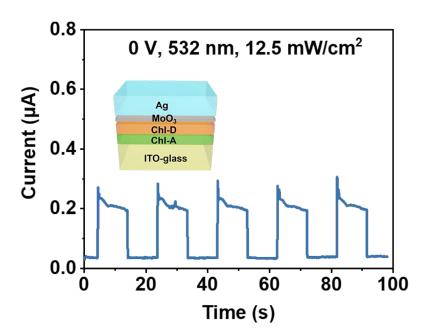


Figure S6. I-t curves of the ITO/Chl-A/Chl-D/MoO₃/Ag device under 532 nm laser.

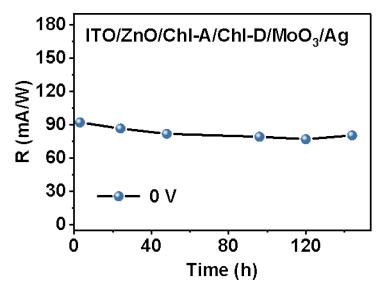


Figure S7. Stability of the device responsivity at different time for the device at 0 V.

References

- [1] W. Zhao, C. Dall'Agnese, S. Duan, Y. Sanehira, Y. Wei, H. Tamiaki, S. Sasaki and
- X.-F. Wang, Trilayer Chlorophyll-Based Cascade Biosolar Cells, ACS Energy Lett.

2019, **4**, 384-389.