Supporting Information

Construction of Chiral-2D/3D Perovskite Heterojunction Films for Efficient Circularly Polarized Light Detection

Liting Tao^{1#}, Wei Tang^{2#}, Minxing Yan¹, Li Ding¹, Jiajun Wei¹, Lixiang Wang¹, Liqi Li¹,

Linjun Li^{2*}, Deren Yang^{1,4}, and Yanjun Fang^{1,3,4*}

¹State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

²State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China

³Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024,

P. R. China

⁴Shangyu Institute of Semiconductor Materials, Shaoxing, 312366, P. R. China

*E-mail: jkfang@zju.edu.cn; lilinjun@zju.edu.cn

L.T. and W.T. contributed equally to this work

Figure S1. Photoluminescence spectrum of $(R-\alpha-PEA)_2PbI_4$ film.

Figure S2. (a,b) XRD patterns (a) and absorption spectra (b) of 3D and $(R-\alpha-PEA)I$ -treated samples with four different concentrations (1, 5, 10, 20 mg/mL). (c) The absorption spectrum of $(R-\alpha-PEA)_2PbI_4$ film.

Figure S3. CD spectra of $(R-\alpha-PEA)_2PbI_4$, $(S-\alpha-PEA)_2PbI_4$ and $(rac-\alpha-PEA)_2PbI_4$ films.

Figure S4. (a) Raw intensity profiles of Si, PEA, I in the 120s-cycle1 sample measured by TOF-SIMS. (b) Relative intensity ratio of I/PEA with different etching times.

Based on the I to PEA relative ratio as a function of etching depth shown above, the phase distribution along the vertical direction can be divided into three regions. The quasi-2D phases with small n values are mainly presented on the surface of the films with the thickness of ~50 nm, while the next is the transition zone from small to large n phases with the thickness of about 200 nm. And the bottom part of the film shows large and nearly constant I/PEA ratio, which can be assigned to the 3D perovskite phase with the thickness of around 250 nm.

<u>1 mm</u>				
0s-cycle1	0s-cycle2	0s-cycle3	0s-cycle4	0s-cycle5

Figure S5. The optical microscope images of chiral-2D/3D films spin-coated with 1-5 cycles of $(R-\alpha-PEA)I$

solution.

Figure S6. The photocurrent output of chiral-2D/3D detectors under the bias of 3 V and 5 V, respectively, with the incident light intensity of 2.45 mW cm⁻².

Figure S7. (a, b) *I-V* curves of the devices without (a) and with Poly-TPD interlayer (b) under illumination of a 505 nm laser with different intensities at a bias of 3 V.