Supporting Information

Ga(IO₃)₃: A mid-IR nonlinear optical iodate with balanced performance between band gap and second harmonic generation response

Dandan Wang,^{a, c} Xinyuan Zhang, *^a Pifu Gong, *^b Zheshuai Lin,^b Zhanggui Hu,^a and Yicheng Wu^a

- ^a Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin 300384, China.
- ^b Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- ^c Huace Eco Environmental Technology (Tianjin) Company, Ltd., Tianjin 300399, China.

Contents.

Table S1. Crystal data and structure refinements of Ga(IO₃)₃.

Table S2. Selected bond lengths (Å) of Ga(IO₃)₃.

Table S3. Selected bond angles (°) of Ga(IO₃)₃.

Table S4. Space group, SHG responses, band gap, birefringence for the iodate materials only including IO_3^- unit.

Table S5. Properties of NLO gallium iodates.

Table S6. Calculation of the dipole moment for GaO_6 and IO_3 polyhedrons and the net dipole moment for a unit cell, and BSI and GII indices of $Ga(IO_3)_3$.

Figure S1. The EDS spectrum of Ga(IO₃)₃.

Figure S2. (a) The TG and DSC curves and (b) PXRD pattern of the residual of $Ga(IO_3)_3$.

Figure S3. The IR spectrum of Ga(IO₃)₃.

Figure S4. The Raman spectrum of Ga(IO₃)₃.

Figure S5. Birefringence measurement of Ga(IO₃)_{3.}

Figure S6. The direction of dipole moments of IO_3^- units in $Ga(IO_3)_3$.

1. Supplementary Tables.

Formula	Ga(IO ₃) ₃
Temperature (K)	290
Crystal system	Hexagonal
Space group	$P6_{3}$
<i>a</i> (Å)	9.0924 (5)
<i>b</i> (Å)	9.0924 (5)
<i>c</i> (Å)	5.2862 (8)
α (°)	90
β (°)	90
γ (°)	120
Ζ	2
$V(Å^3)$	378.47 (6)
$\mu ({\rm mm}^{-1})$	15.90
$R[F^2 > 2\sigma (F^2)]^{\mathrm{a}}$	0.016
$wR(F^2)$	0.037

Table S1. Crystal data and structure refinements of $Ga(IO_3)_3$.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, \ \omega R_2 = [\Sigma \omega (F_o^2 - F_c^2)_2 / \Sigma \omega (F_o^2)^2]^{1/2}$

Bond	Length/Å
 I1-O1	1.847(5)
I1-O2	1.804(6)
I1-O3	1.806(6)
Ga1-O1	1.980(2)
Ga1-O1	1.980(2)
Ga1-O1	1.980(2)
Ga1-O3	1.960(2)
Ga1-O3	1.960(2)
Ga1- O3	1.961(2)

Table S2. Selected bond lengths (\AA) of $Ga(IO_3)_3$.

Angle	(°)
O1-I1-O2	99.61(12)
O1-I1-O3	94.68(11)
O2-I1-O3	96.61(12)
O1-Ga1-O1	90.75(11)
O1-Ga1-O3	169.98(10)
O1-Ga1-O3	85.24(10)
O1-Ga1-O3	98.46(10)
O1-Ga1-O3	98.45(10)
O3-Ga1-O3	86.28(10)

Table S3. Selected bond angles (°) of $Ga(IO_3)_3$.

Compounds	Space	SHG effect	Band gap	Birefringence	Dof
Compounds	group	(× KDP)	(eV)	Direningenee	Kei
LiMg(IO ₃) ₃	$P6_3$	24	4.34	0.22 @ 1064 nm ^a	S 1
$K_2Mg(IO_3)_4(H_2O)_2$	<i>I</i> 2	1.4	4.37	0.021 @ 1064 nm ^a	S2
Ba ₂ [MoO ₃ (OH)(IO ₃) ₂]IO ₃	$P2_1$	8	3.78	0.225 @ 1064 nm ^a	S3
CHO E		()	4.22	0.072 @ 1064 nm ^a	C 4
CalO ₃ F	$PZ_{1}Z_{1}Z_{1}$	0.2	4.22	0.068 @ 546.1 nm ^b	84
$K_5(W_3O_9F_4)(IO_3)$	Pm	11	3.83	0.083 @ 1064 nm ^a	S5
(H ₃ O)HCs ₂ Nb(IO ₃) ₉	$P2_{1}$	6	3.58	0.052 @ 1064 nm ^a	S 6
LiZn(IO ₃) ₃	$P6_{3}$	14	4.21	0.27 @ 1064 nm ^a	S 7
LiCd(IO ₃) ₃	$P6_{3}$	12	4.18	0.27 @ 1064 nm ^a	S 7
NaVO ₂ (IO ₃) ₂ (H ₂ O)	$P2_1$	20	3.06	0.21 @ 1064 nm ^a	S 8
$K_2Zn(IO_3)_4(H_2O)_2$	<i>I</i> 2	2.3	4.35	0.018 @ 1064 nm ^a	S2
BaNbO(IO ₃) ₅	Cc	14	3.64	0.035 @ 1064 nm ^a	S9
NH ₄ [MoO ₃ (IO ₃)]	P na 2_1	4.7	3.26	0.083 @ 1064 nm ^a	S10
KRb[(MoO ₃) ₂ (IO ₃) ₂]	Cc	8.5	3.32	0.146 @ 1064 nm ^a	S10
Ce(IO ₃) ₄	R3c	0.9	2.17	0.049 @ 546 nm ^b	S11
Y(IO ₃) ₂ F	$P6_{5}$	2	3.91	0.041 @ 1064 nm ^a	S12
	DC	16		0.253 @ 546 nm ^a	012
β -Sc(IO ₃) ₃	$P6_3$	16	4.52	0.219 @ 546 nm ^b	813
$Ce(IO_3)_2F_2 \cdot H_2O$	Ima2	3	2.6	0.046 @ 1064 nm ^a	S14
$Sn(IO_3)_2F_2$	$P2_1$	3	4.08	0.234 @ 1064 nm ^a	S15
Bi(IO ₃)F ₂	<i>C</i> 2	11.5	3.97	0.209 @ 1064 nm ^a	S16
Bi ₂ Te(IO ₃)O ₅ Cl	Cc	3	3.6	0.091 @ 1064 nm ^a	S17
[GaF(H ₂ O)][IO ₃ F]	$Pca2_1$	10	4.34	0.142 @ 1064 nm ^a	S18
α -Ba ₂ [GaF ₄ (IO ₃) ₂](IO ₃)	$Pna2_1$	~ 6	4.61	0.126 @ 1064 nm ^a	S19
β -Ba ₂ [GaF ₄ (IO ₃) ₂](IO ₃)	$P2_{1}$	~ 6	4.35	0.135 @ 1064 nm ^a	S19
	D.(10	2.04	0.187 @ 1064 nm ^a	This
$Ga(IO_3)_3$	$Ga(IO_3)_3$ $P6_3$ 13 3.94	0.159 ^b	work		

Table S4. Space group, SHG responses, band gap, birefringence for the iodatematerials only including IO3- unit.

^{a.} calculated birefringence; ^{b.} experimented birefringence.

Tuble 55. Tropernes of Tibo gamain routes.					
Compounds	Space	SHG effect	Band gap	Directurgence	Dof
	group	(× KDP)	(eV)	Birennigence	Kei
[GaF(H ₂ O)][IO ₃ F]	$Pca2_1$	10	4.34	0.142 @ 1064 nm ^a	S18
α -Ba ₂ [GaF ₄ (IO ₃) ₂](IO ₃)	$Pna2_1$	~ 6	4.61	0.126 @ 1064 nm ^a	S19
β -Ba ₂ [GaF ₄ (IO ₃) ₂](IO ₃)	<i>P</i> 2 ₁	~ 6	4.35	0.135 @ 1064 nm ^a	S19
Ga(IO ₃) ₃	<i>P</i> 6 ₃	13	3.94	0.187 @ 1064 nm ^a	This
				0.159 ^b	work

 Table S5. Properties of NLO gallium iodates.

a. calculated data; ^{b.} experimented data.

$Ga(IO_3)_3 (Z = 2)$					
Graning	Valence of	Dipole moment (D = Debye)			
Species	central atom	x(a)	y(b)	z(c)	total magnitude
GalO ₆	3.1377	0	0	-1.5237	1.5237
Ga1O ₆	3.1377	0	0	-1.5237	1.5237
I1O ₃	4.9390	6.3867	- 15.6911	-37.2953	40.9627
I1O3	4.9390	5.0027	7.9833	-32.4618	33.8013
I1O ₃	4.9390	-23.0483	2.0361	-27.6529	36.0563
I1O3	4.9390	-6.3867	15.6911	-37.2953	40.9627
I1O3	4.9390	5.0027	-7.9833	-32.4618	33.8013
I1O3	4.9390	23.0483	-2.0361	-27.6529	36.0563
Net dipole moment		0	0	-3.0474	
Net dipole moment (IO ₃)		0	0	-194.82	
Net dipole moment (a unit cell)		0	0	-197.8674	
Cell volume	1163.45 Å ³				
Dipole moment density (IO ₃)	194.82/1163.45=0.167 D/Å ³				
Dipole moment density (a unit cell)	197.8674/1163.45= 0.170 D/Å ³				
Bond Strain Index (BSI)	0.190 vu				
Global Instability Index (GII)	0.178 vu				

Table S6. Calculation of the dipole moment for GaO_6 and IO_3 polyhedrons and thenet dipole moment for a unit cell, and BSI and GII indices of $Ga(IO_3)_3$.

2. Supplementary Figures.

Figure S1. The EDS spectrum of Ga(IO₃)₃.

Figure S2. (a) The TG and DSC curves and (b) PXRD pattern of the residual of $Ga(IO_3)_3$.

Figure S3. The IR spectrum of Ga(IO₃)₃.

Figure S4. The Raman spectrum of Ga(IO₃)₃.

Figure S5. Birefringence measurement of Ga(IO₃)₃; (a) the original crystal; (b) the crystal in the extinction state; (c) the crystal interference color observed under the microscope and (d) the photographs of crystal thickness.

Figure S6. The direction of dipole moments of IO_3^- units in $Ga(IO_3)_3$.

References

- S1.J. Chen, C. L. Hu, F. F. Mao, X. H. Zhang, B. P. Yang and J. G. Mao, LiMg(IO₃)₃: an excellent SHG material designed by single-site aliovalent substitution, *Chem. Sci.*, 2019, **10**, 10870-10875.
- S2. P. X. Li, C. L. Hu, X. Xu, R. Y. Wang, C. F. Sun and J. G. Mao, Explorations of New Second-Order Nonlinear Optical Materials in the K¹-M^{II}-I^V-O Systems, *Inorg. Chem.*, 2010, 49, 4599-4605.
- S3.Q. M. Huang, C. L. Hu, B. P. Yang, R. L. Tang, J. Chen, Z. Fang, B. X. Li and J. G. Mao, Ba₂[MoO₃(OH)(IO₃)₂]IO₃: A promising SHG material featuring a Λ-shaped functional motif achieved by universal mono-site substitution, *Chem. Mater.*, 2020, **32**, 6780-6787.
- S4. L. L. Cao, M. Luo, C. S. Lin, T. Yan and N. Ye, From centrosymmetric to noncentrosymmetric: intriguing structure evolution in d¹⁰-transition metal iodate fluorides, *Chem. Commun.*, 2020, 56, 10734-10737.
- S5.C. Wu, L. Lin, X. X. Jiang, Z. S. Lin, Z. P. Huang, M. G. Humphrey, P. S. Halasyamani and C. Zhang, K₅(W₃O₉F₄)(IO₃): An Efficient Mid-Infrared Nonlinear Optical Compound with High Laser Damage Threshold, *Chem. Mater.*, 2019, **31**, 10100-10108.
- S6.F. F. Mao, C. L. Hu, J. Chen, R. L. Tang, B. L. Wu and J. G. Mao, (H₃O)HCs₂Nb(IO₃)₉ and SrNbO(IO₃)₅: a facile synthetic method using hydrofluoric acid as a solubilizer, *Chem. Commun.*, 2019, 55, 6906-6909.
- S7.Y. J. Jia, Y. G. Chen, Y. Guo, X. F. Guan, C. B. Li, B. X. Li, M. M. Liu and X. M. Zhang, LiM^{II}(IO₃)₃ (M^{II} = Zn and Cd): Two Promising Nonlinear Optical Crystals Derived from a Tunable Structure Model of α-LiIO₃, *Angew. Chem. Int. Ed.*, 2019, **58**, 17194-17198.
- S8. B. P. Yang, C. L. Hu, X. Xu, C. F. Sun, J. H. Zhang and J. G. Mao, NaVO₂(IO₃)₂(H₂O): A unique layered material produces a very strong shg response, *Chem. Mater.*, 2010, 22, 1545-1550.
- S9. C. F. Sun, C. L. Hu, X. Xu, J. B. Ling, T. Hu, F. Kong, X. F. Long and J. G. Mao, BaNbO(IO₃)₅: A New Polar Material with a Very Large SHG Response, J. Am. Chem. Soc., 2009, 131, 9486-9487.
- S10. Y. H. Li, G. P. Han, H. W. Yu, H. Li, Z. H. Yang and S. L. Pan, Two Polar Molybdenum(VI) Iodates(V) with Large Second-Harmonic Generation Responses, *Chem. Mater.*, 2019, **31**, 2992-3000.
- S11. T. H. Wu, X. X. Jiang, C. Wu, H. Y. Sha, Z. J. Wang, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey and C. Zhang, From Ce(IO₃)₄ to CeF₂(IO₃)₂: fluorinated homovalent substitution simultaneously enhances SHG response and bandgap for mid-infrared nonlinear optics, *J. Mater. Chem. C*, 2021, **2**, 8987-8993.
- S12. G. Peng, Y. Yang, T. Yan, D. Zhao, B. Li, G. Zhang, Z. Lin and N. Ye, Helix-constructed polar rare-earth iodate fluoride as a laser nonlinear optical multifunctional material, *Chem. Sci.*, 2020, 11, 7396-7400.
- S13. C. Wu, G. F. Wei, X. X. Jiang, Q. K. Xu, Z. S. Lin, Z. P. Huang, M. G. Humphrey and C. Zhang, Additive-Triggered Polar Polymorph Formation: β -Sc(IO₃)₃, a Promising Next-Generation Mid-

Infrared Nonlinear Optical Material, Angew. Chem. Int. Ed., 2022, 61, e202208514.

- S14. T. Abudouwufu, M. Zhang, S. C. Cheng, Z. H. Yang and S. L. Pan, Ce(IO₃)F₂·H₂O: The First Rare-Earth-Metal Iodate Fluoride with Large Second Harmonic Generation Response, *Chem.-Eur. J.*, 2019, **25**, 1221-1226.
- S15. M. Luo, F. Liang, X. Hao, D. H. Lin, B. X. Li, Z. S. Lin and N. Ye, Rational Design of the Nonlinear Optical Response in a Tin Iodate Fluoride Sn(IO₃)₂F₂, *Chem. Mater.*, 2020, **32**, 2615-2620.
- S16. F. F. Mao, C. L. Hu, X. Xu, D. Yan, B. P. Yang and J. G. Mao, Bi(IO₃)F₂: The First Metal Iodate Fluoride with a Very Strong Second Harmonic Generation Effect, *Angew. Chem. Int. Ed.*, 2017, 56, 2151-2155.
- S17. L. Geng, C.-Y. Meng, H. Y. Lu, Z. Z. Luo, C. S. Lin and W. D. Cheng, Bi₂Te(IO₃)O₅Cl: a novel polar iodate oxychloride exhibiting a second-order nonlinear optical response, *Dalton Trans.*, 2015, 44, 2469-2475.
- S18. Q. M. Huang, C. L. Hu, B. P. Yang, Z. Fang, Y. Lin, J. Chen, B. X. Li and J. G. Mao, [GaF(H₂O)][IO₃F]: a promising NLO material obtained by anisotropic polycation substitution, *Chem. Sci.*, 2021, **12**, 9333-9338.
- S19. J. Chen, C. L. Hu, F. F. Mao, J. H. Feng and J. G. Mao, A Facile Route to Nonlinear Optical Materials: Three-Site Aliovalent Substitution Involving One Cation and Two Anions, *Angew. Chem. Int. Ed.*, 2019, 58, 2098-2102.