Electronic Supporting Information

Na₇(SeO₄)₃(IO₃) and K₂(SeO₄)[IO₂(OH)]: Two New Iodate-Selenates with Short-Wave UV Cutoff Edge and Large Birefringence[†]

Wen Song,^{*a*} Jinxuan Ren,^{*a*} Jinwen Tan,^{*a*} Liling Cao,^{*a*} Xuehua Dong,^{*a*} Ling Huang,^{**a*} Daojiang Gao,^{*a*} and Guohong Zou^{**b*}

^{*a*}College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, P. R. China.

^bCollege of Chemistry, Sichuan University, Chengdu, 610065, P. R. China.

E-mail: huangl026@sina.com, zough@scu.edu.cn

Table of contents

Sections	Titles	Pages
Table S1	Atomic coordinates and equivalent isotropic displacement parameters, and calculated	S3
	Bond Valence Sum for Na ₇ (SeO ₄) ₃ (IO ₃). $U_{(eq)}$ is defined as one third of the trace of the	
	orthogonalized U_{ij} tensor.	
Table S2	Atomic coordinates and equivalent isotropic displacement parameters, and calculated	S4
	Bond Valence Sum for $K_2(SeO_4)[IO_2(OH)]$. $U_{(eq)}$ is defined as one third of the trace of	
	the orthogonalized U_{ij} tensor.	
Table S3	Selected bond lengths [Å] and angles [°] for Na7(SeO4)3(IO3).	S5
Table S4	Selected bond lengths [Å] and angles [°] for $K_2(SeO_4)[IO_2(OH)]$.	S6
Table S5	Flexibility index F of the anionic group in Na ₇ (SeO ₄) ₃ (IO ₃).	S 7
Fig. S1	(a, b) The bond length of $[SeO_4]$ and $[IO_3]$ in Na ₇ (SeO ₄) ₃ (IO ₃). (c, d) The bond length of	S8
	[SeO ₄] and [IO ₂ (OH)] in K ₂ (SeO ₄)[IO ₂ (OH)].	
Fig. S2	XRD patterns of (a) $Na_7(SeO_4)_3(IO_3)$ and (b) $K_2(SeO_4)[IO_2(OH)]$.	S8
Fig. S3	TGA curves for (a) $Na_7(SeO_4)_3(IO_3)$ and (b) $K_2(SeO_4)[IO_2(OH)]$.	S8
Fig. S4	XRD patterns of (a) Na ₇ (SeO ₄) ₃ (IO ₃) and (b) K ₂ (SeO ₄)[IO ₂ (OH)] after melting.	S9
Fig. S5	IR spectra of (a) $Na_7(SeO_4)_3(IO_3)$ and (b) $K_2(SeO_4)[IO_2(OH)]$.	S9
Fig. S6	Calculated band gaps of (a) Na7(SeO4)3(IO3) and (b) K2(SeO4)[IO2(OH)].	S9

atom	X	у	Z	$U_{\rm eq}({\rm \AA}^2)$	BVS
I1	0.91973 (4)	0.49222 (3)	0.92516 (2)	0.01056 (8)	5.19
Se1	0.2526 (7)	0.24405 (4)	0.83448 (3)	0.00939 (11)	6.03
Se2	0.7561 (7)	-0.00168 (5)	0.91219 (2)	0.01163 (10)	6.08
Se3	0.73716 (7)	0.21051 (4)	0.66291 (3)	0.00929 (11)	6.11
Na1	0.10054 (3)	-0.0241 (2)	0.76267 (12)	0.0166 (5)	1.10
Na2	0.5175 (3)	0.2802 (2)	0.99153 (14)	0.0187 (6)	1.12
Na3	0.7572 (3)	0.25162 (18)	0.83618 (14)	0.022 (5)	1.04
Na4	0.12654 (3)	-0.03353 (19)	0.9113 (11)	0.0196 (5)	1.08
Na5	0.4790 (3)	0.2268 (2)	0.50558 (14)	0.0166 (6)	1.17
Na6	0.4985 (3)	-0.0293 (2)	0.74706 (14)	0.0278 (6)	0.96
Na7	0.2432 (3)	0.2077 (3)	0.6672(15)	0.0345 (7)	1.02
01	0.7400 (6)	0.3367 (3)	0.7067 (2)	0.021 (9)	2.03
O2	0.9229 (6)	0.1334 (4)	0.6847 (2)	0.0205 (9)	1.90
O3	0.8075 (5)	0.6314 (4)	0.9473 (2)	0.0166 (9)	2.31
O4	0.2539 (6)	0.1031 (3)	0.8109 (2)	0.0178 (8)	2.00
05	0.2292 (6)	0.3286 (3)	0.7645 (2)	0.0188 (8)	2.09
O6	0.7430 (6)	0.2376 (3)	0.5789 (2)	0.0177 (8)	2.13
07	0.7411 (6)	0.0445 (3)	0.83059 (19)	0.021 (8)	2.09
08	0.8041 (5)	0.3948 (4)	0.9867 (2)	0.0159 (9)	2.22
09	0.5461 (5)	0.1388 (4)	0.6823 (2)	0.0227 (10)	2.09
O10	0.4488 (5)	0.2796 (4)	0.8727 (2)	0.0217 (10)	2.05
011	0.5799 (6)	-0.0900 (4)	0.9293 (3)	0.0289 (10)	1.93
012	0.746 (6)	0.2664 (4)	0.8871 (2)	0.0179 (9)	1.88
O13	0.7980 (5)	0.4588 (3)	0.8447 (2)	0.0147 (8)	2.28
O14	0.7517 (6)	0.1125 (4)	0.9649 (2)	0.0265 (9)	1.93
015	0.9503 (5)	-0.0785 (4)	0.9192 (3)	0.0293 (11)	1.97

Table S1. Atomic coordinates and equivalent isotropic displacement parameters, and calculated Bond Valence Sum for Na₇(SeO₄)₃(IO₃). $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	х	у	Z	$U_{\rm eq}({\rm \AA}^2)$	BVS
I1	0.25022 (3)	0.70311 (2)	0.75267 (2)	0.01152 (7)	5.13
I2	0.62148 (3)	0.57045 (2)	0.8674 (2)	0.0127 (7)	5.14
Se1	1.01462 (4)	0.72353 (2)	0.95483 (2)	0.01229 (9)	6.06
Se2	0.85559 (4)	0.53484 (2)	0.65537 (2)	0.01295 (9)	6.05
K1	0.53622 (10)	0.83013 (6)	0.9745 (6)	0.02084 (17)	1.07
K2	0.72727 (11)	0.31278 (5)	0.78629 (6)	0.02042 (17)	1.02
K3	1.12705 (11)	0.44586 (6)	0.88573 (6)	0.02186 (18)	1.17
K4	0.13555 (11)	0.95395 (6)	0.86573 (6)	0.02306 (18)	1.07
01	0.4748 (3)	0.73486 (17)	0.7890 (18)	0.0176 (5)	2.02
O2	0.2993 (3)	0.65224 (17)	0.63247 (17)	0.0195 (5)	2.60
O3	0.5685 (3)	0.62757 (18)	0.9861 (17)	0.0212 (5)	2.50
O4	0.6959 (3)	0.4613 (17)	0.91994 (18)	0.0218 (6)	1.95
05	0.1597 (3)	0.81314 (17)	0.71316 (18)	0.0207 (5)	2.16
O6	0.9105 (4)	0.64347 (17)	0.6775 (2)	0.0267 (6)	1.84
07	1.2074 (3)	0.75493 (18)	0.91807 (18)	0.0209 (6)	2.00
O8	0.9723 (3)	0.6150 (18)	0.9249 (2)	0.0245 (6)	1.91
O9	0.8629 (4)	0.79296 (19)	0.9069 (19)	0.0266 (6)	1.96
O10	0.6854 (4)	0.50596 (19)	0.71785 (19)	0.0259 (6)	2.06
011	0.7955 (4)	0.5200 (2)	0.54344 (18)	0.0311 (7)	1.95
012	1.0167 (19)	0.46422 (11)	0.68939 (11)	0.0302 (7)	1.95
013	0.40016 (19)	0.53962 (11)	0.82771 (11)	0.0189 (5)	2.15
O14	1.02499 (19)	0.73127 (11)	1.07079 (11)	0.0209 (6)	1.86

Table S2. Atomic coordinates and equivalent isotropic displacement parameters, and calculated Bond Valence Sum for $K_2(SeO_4)[IO_2(OH)]$. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Se1—O4	1.643 (4)	Na1—O2	2.380 (5)
Se105	1.643 (4)	Na1—O7	2.411 (4)
Se1-010	1.626 (4)	Na2—O8	2.416 (4)
Se1-012	1.635 (4)	Na2—O10	2.311 (5)
Se2—07	1.638 (4)	Na4—O15	2.308 (5)
Se2—011	1.633 (4)	Na4—O1 ^{vii}	2.674 (5)
Se2—014	1.627 (4)	Na5—O6	2.345 (4)
Se2—O15	1.636 (4)	Na5—O3 ^{ix}	2.474 (4)
Se3—O1	1.642 (4)	Na6—O4	2.592 (5)
Se3—O2	1.635 (4)	Na6—O7	2.490 (5)
Se3—O6	1.626 (4)	Na6—O9	2.277 (5)
Se3—O9	1.625 (4)	Na7—O4	2.973 (5)
I1—O3	1.804 (4)	Na7—O5	2.295 (5)
I1—O8	1.801 (4)	Na7—O9	2.312 (5)
I1—O13	1.797 (4)	Na7—O2 ^{vi}	2.454 (5)
Na2 ⁱ —I1—Na1 ⁱⁱ	111.83 (6)	O13—I1—O3	99.47 (18)
Na3—I1—Na1 ⁱⁱ	61.14 (6)	O5—Se1—O4	109.6 (2)
Na4 ^{iv} —I1—Na1 ⁱⁱ	167.92 (6)	O15—Na4—O6 ^{vii}	75.82 (15)
Na5 ⁱⁱⁱ —I1—Na1 ⁱⁱ	115.90 (6)	O10—Se1—O12	110.9 (2)
Na7 ^v —I1—Na1 ⁱⁱ	63.31 (7)	O12—Se1—O5	109.1 (2)
O4 ^{viii} —Na4—Na1	46.45 (11)	O7—Se2—Na4 ^{vi}	87.87 (15)
O4 ^{viii} —Na4—O1 ^{vii}	71.76 (13)	O11—Se2—O15	108.4 (2)
O6 ^{vii} —Na4—I1 ⁱ	94.52 (11)	O14—Se2—O15	112.4 (2)
O6 ^{vii} —Na4—Se1 ^{viii}	158.85 (12)	O15—Se2—O7	107.4 (2)
O6 ^{vii} —Na4—O1 ^{vii}	61.15 (13)	O1—Se3—Na7	90.47 (16)
O3—I1—Na1 ⁱⁱ	109.85 (14)	O6—Na5—O3 ^{xi}	74.78 (15)
O3—I1—Na5 ⁱⁱⁱ	39.40 (13)	O2—Na1—O5	101.79 (16)
O8—I1—Na4 ^{iv}	47.67 (13)	O9—Na6—O1 ^{ix}	144.19 (18)
O13—I1—Na2 ⁱ	107.34 (13)	O13 ^{vii} —Na1—I1 ^{vii}	26.97 (8)
O6—Na4—O3 ⁱ	63.93 (12)	Na6—O9—Na7	101.78 (17)
O8 ⁱ —Na4—I1 ⁱ	32.17 (9)	O12viii—Na3—Se3	115.90 (12)
O8 ⁱ —Na4—O6 ^{vii}	124.53 (15)	I1—O3—Na4 ^{iv}	86.25 (16)
O11 ^{viii} —Na4—I1 ⁱ	65.63 (14)	I1 ^{iv} —Na2—Na3 ^{iv}	55.25 (5)

Table S3. Selected bond lengths [Å] and angles $[\circ]$ for Na₇(SeO₄)₃(IO₃).

Symmetry codes:

(i) 2-x, 1/2+y, 3/2-z; (ii) 1/2+x, 1/2-y, 2-z; (iii) -1/2+x, 1/2-y, 2-z; (iv) 3/2-x, 1-y, 1/2+z; (v) 1-x, 1/2+y, 3/2-z; (vi) -1+x, +y, +z; (vii) 2-x, -1/2+y, 3/2-z; (viii) 1+x, +y, +z; (ix) 1-x, -1/2+y, 3/2-z; (x) 3/2-x, -y, 1/2+z; (xi) 3/2-x, 1-y, -1/2+z; (xii) 3/2-x, -y, -1/2+z; (xiii) 1/2+x, 1/2-y, 1-z; (xiv) -1/2+x, 1/2-y, 1-z.

I1—01	1.798 (2)	Se2—O12	1.6266 (15)
I1—O2	1.905 (2)	I1—K1	4.0894 (8)
I1—O5	1.783 (2)	I1—K4	4.0343 (9)
I2—O3	1.930 (2)	Se2—K2	3.8252 (9)
I2—O4	1.795 (2)	Se2—K3	3.9205 (9)
I2—O13	1.7833 (14)	Se2—K4 ⁱⁱ	3.8885 (9)
Sel—O7	1.649 (2)	K3—O4	3.348 (3)
Sel—O8	1.628 (3)	K3—O5 ^{vii}	2.911 (3)
Sel—O9	1.625 (3)	K3—O8 ^{iv}	2.958 (3)
Se1—014	1.6339 (15)	K4—O2 ⁱ	2.490 (5)
Se2—O6	1.627 (2)	K4—O5	2.277 (5)
Se2—O10	1.668 (2)	K1—O11 ^{viii}	3.018 (3)
Se2—O11	1.622 (3)	K2—O1 ^{vii}	2.798 (2)
K2 ⁱ —I1—K1	111.052 (17)	K2—O4	2.855 (3)
K2 ⁱ —I1—K4	58.728 (17)	O14—K3 ^{iv}	2.8602 (17)
O9 ^{vii} —K2—K3	123.37 (6)	O5 ^{vii} —K3—I2 ^{iv}	97.97 (6)
O9 ^{vii} —K2—K4 ⁱⁱ	53.38 (6)	O5 ^{vii} —K3—Se1 ^{iv}	93.89 (5)
$K2^{i}$ —I1— $K4^{ii}$	120.894 (18)	O3—K1—Se2 ^{viii}	122.30 (5)
K4—I1—K1	54.816 (16)	O13—I2—K1	99.68 (5)
O1—I1—K1	40.12 (8)	O7—Se1—K3 ^{iv}	134.99 (10)
01—I1—O2	95.91 (11)	O5 ^{vii} —K3—O4	134.07 (7)
01—I1—07 ⁱⁱⁱ	81.19 (10)	O8—K3—I2 ^{iv}	93.50 (6)
O2—I1—K4	138.65 (8)	O12—K3—K2	60.88 (4)
O14 ^{iv} —K2—O4	76.70 (6)	O13 ^v —K3—I2 ^{iv}	87.94 (4)
K2—I2—K1	174.722 (18)	O6—Se2—K2	139.91 (10)
K2—I2—K4 ⁱⁱ	58.611 (18)	O10—Se2—K3	82.06 (10)
K3 ^{iv} —I2—K1	78.521 (18)	O11—Se2—K2	107.34 (11)
K3 ^{iv} —I2—K2	96.209 (18)	O2 ⁱ —K4—Se ⁱ	82.65 (5)
K4 ⁱⁱ —I2—K1	126.458 (17)	O6 ^{vii} —K2—O10	150.59 (8)
O3—K1—K4	123.71 (6)	Se2—O12—K3	120.20 (7)
O4—I2—K1	133.55 (9)	O4—K2—Se	75.07 (5)
Se1—O8—K3	143.54 (14)	Se1—O8—K3	143.54 (14)

Table S4. Selected bond lengths [Å] and angles [°] for $K_2(SeO_4)[IO_2(OH)]$.

Symmetry codes:

(i) 1/2-x, 1/2+y, 3/2-z; (ii) 1/2-x, -1/2+y, 3/2-z; (iii) -1+x, +y, +z; (iv) 2-x, 1-y,2-z; (v) 1+x, +y, +z; (vi) 1/2+x, 3/2-y, -1/2+z; (vii) 3/2-x, -1/2+y, 3/2-z; (viii) -1/2+x, 3/2-y, 1/2+z; (ix) 3/2-x, 1/2+y, 3/2-z; (x) 1/2+x, 3/2-y, 1/2+z; (xi) -1/2+x, 3/2-y, -1/2+z.

	$R_0(\text{\AA})$	$R_{\rm a}({\rm \AA})$	$\operatorname{Exp}[(R_0 - R_a)/B]$	$(\sqrt{C_a}+\sqrt{C_b})^2/R_a^2$	F
IO ₃	2.003	1.801	1.726	8.004	0.216
SelO ₄	1.788	1.637	1.504	8.956	0.168
Se2O ₄	1.788	1.634	1.516	8.989	0.169
Se3O ₄	1.788	1.632	1.524	9.011	0.169

Table S5. Flexibility index F of the anionic group in Na₇(SeO₄)₃(IO₃).

Fig. S1 (a, b) The bond length of $[SeO_4]$ and $[IO_3]$ in Na₇(SeO₄)₃(IO₃). (c, d) The bond length of $[SeO_4]$ and $[IO_2(OH)]$ in K₂(SeO₄)[IO₂(OH)].

Fig. S2 XRD patterns of (a) Na7(SeO4)3(IO3) and (b) K2(SeO4)[IO2(OH)].

Fig. S3 TGA curves for (a) Na₇(SeO₄)₃(IO₃) and (b) K₂(SeO₄)[IO₂(OH)].

Fig. S4 XRD patterns of (a) Na₇(SeO₄)₃(IO₃) and (b) K₂(SeO₄)[IO₂(OH)] after melting.

Fig. S5 IR spectra of (a) $Na_7(SeO_4)_3(IO_3)$ and (b) $K_2(SeO_4)[IO_2(OH)]$.

Fig. S6 Calculated band gaps of (a) Na₇(SeO₄)₃(IO₃) and (b) K₂(SeO₄)[IO₂(OH)].