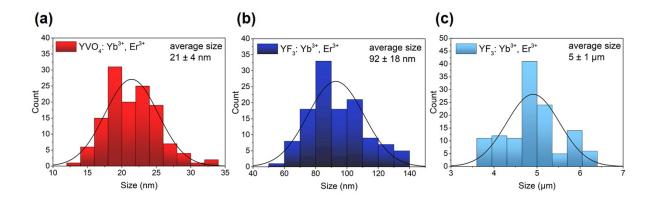
Supporting Information for:

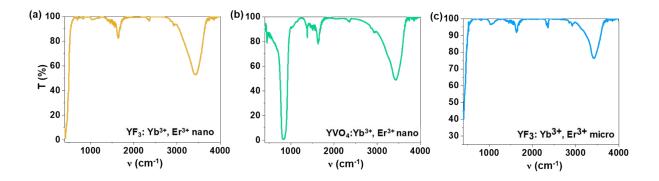
Influence of excitation and detection geometry on optical temperature

readouts – reabsorption effects in luminescence thermometry

Natalia Stopikowska,^{*,a} Przemysław Woźny,^a Markus Suta,^b Teng Zheng,^{*,c} Stefan Lis^a and


Marcin Runowski^{*a,d}

^aAdam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland


^bInorganic Photoactive Materials, Institute of Inorganic and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany

^cSchool of Information and Electrical Engineering, Hangzhou City University, Hangzhou, Zhejiang, China

^dUniversidad de La Laguna, Departamento de Física, MALTA-Consolider Team, IMN and IUdEA, Apdo. Correos 456, E-38200, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain

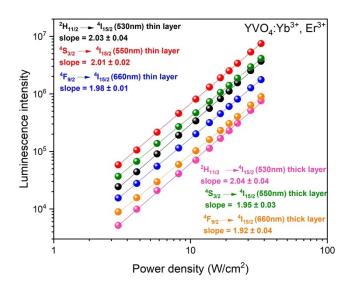


Figure S1. Particle size distributions of (a) nanocrystalline YVO_4 : Yb^{3+} , Er^{3+} , (b) nanocrystalline YF_3 : Yb^{3+} , Er^{3+} , and (c) microcrystalline YF_3 : Yb^{3+} , Er^{3+} .

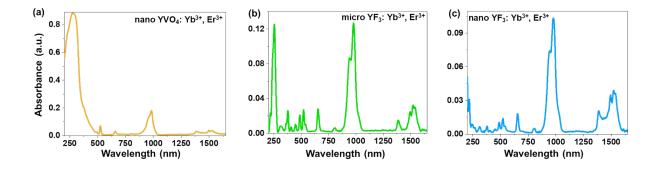
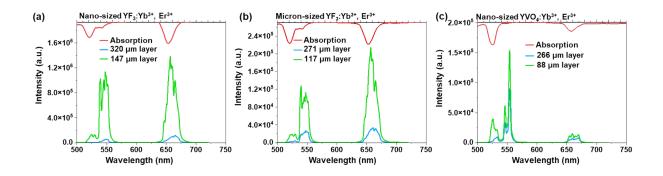


Figure S2. FT-IR spectra of (a) nanocrystalline YF₃: Yb³⁺, Er³⁺, (b) nanocrystalline YVO₄: Yb³⁺, Er³⁺, and (c) microcrystalline YF₃: Yb³⁺, Er³⁺.


In order to determine the number of photons participating in the transitions associated with the observed UC emission bands we have used the well- known relation $I_{UC} \propto (I_{pump})^n$. In this relation I_{UC} is the UC emission intensity, I_{pump} is the pump laser power density and n is the number of photons involved in the UC mechanism. Performing a simple linear fitting, n can be calculated from the slopes of the plotted UC emission intensity as a function of the pump power, both in the logarithmic representations.

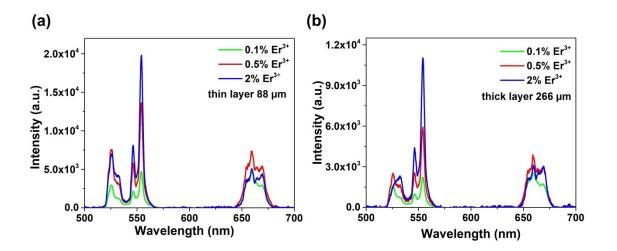

Figure S3. Double logarithmic plot of the incident laser power density vs. the luminescence intensity for YVO_4 : 20% Yb^{3+} , 2% Er^{3+} .

Figure S4. Absorption spectra of (a) nanocrystalline YVO_4 : Yb^{3+} , Er^{3+} , (b) microcrystalline YF_3 : Yb^{3+} , Er^{3+} , and (c) nanocrystalline YF_3 : Yb^{3+} , Er^{3+} .

Figure S5. Non-normalized UC emission spectra of (a) the nano-sized YVO₄: Yb³⁺, Er³⁺, (b) micron-sized YF₃: Yb³⁺, Er³⁺, and (c) nano-sized YF₃: Yb³⁺, Er³⁺, recorded for different sample thicknesses; (λ_{ex} = 975 nm, bottom) combined with absorption spectra (top) of the obtained products.

Figure S6. Non-normalized UC emission spectra of nanocrystalline YVO₄: Yb³⁺, Er³⁺, recorded for different concentrations of Er³⁺ (0.1%, 0.5% and 2%) and for different sample thicknesses: (a) 88 μ m and (b) 266 μ m; λ_{ex} = 975 nm.

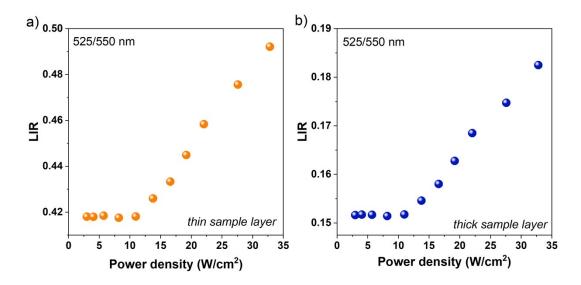
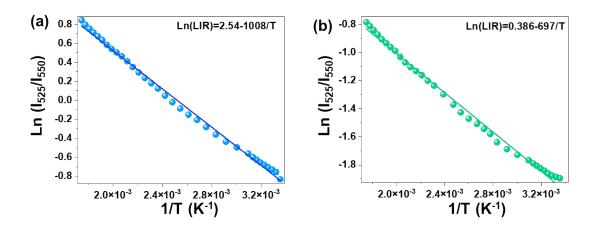



Figure S7. Determined LIR values for Er^{3+} TCLs (${}^{2}\text{H}_{11/2} \rightarrow {}^{4}\text{I}_{15/2} / {}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$) as a function of laser power density for (a) the thin layer sample 88 µm and (b) thick layer sample 266 µm.

Figure S8. The determined LIR values (525/550 nm) as a function of inverse temperature for YVO_4 : Yb^{3+} , Er^{3+} for **(a)** thin layer and **(b)** thick layer of sample.