Supporting Information

Yellow Phosphor Based on Zero-dimensional Antimony Halide for White Light-emitting Diodes

Longyun Lv,¹ Hao Yang,¹ Xiaohua Cheng,¹ Yufan Lin,¹ Xuerui Chang,¹ Teng Cheng,¹ Yipeng Xie,¹ Ying Han,¹ Juan Li,^{1,*} Jun Yin,^{2,*} and Bin-Bin Cui^{1,*}

¹Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology (BIT), Beijing 100081, P. R. China.

²Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077 Hong Kong, P. R. China.

Corresponding Author

cui-chem@bit.edu.cn

1. Experiment sections

Materials: SbCl₃ (99.9%), 2,4,6-trimethylbenzenamine (C₉H₁₃N, 98%), hydrochloric acid (HCl, AR, 36-38%), N, N-dimethylformamide (DMF, AR, \geq 99.5%), acetone (AR, 99.5%) and ethyl ether (AR, \geq 99.5%) were purchased for use without further processing.

Synthesis of 2,4,6-trimethylbenzenamine chloride: The salt was synthesized using a rotary evaporator. We added excess hydrochloric caid (15 mL) to 2,4,6-trimethylbenzenamine (5 mL), then set condensate temperature to minus 15°C, with the water bath heating temperature to 75°C and the rotation speed to 60r/min. Distillation was continued under reduced pressure until the corresponding salt was obtained. Finally, the salt (2,4,6-trimethylbenzenamine chloride) was obtained after being dried for about 2 days in vacuum drying oven.

Synthesis of (NII)₂SbCl₅ single crystal: The (NII)₂SbCl₅ single crystal was prepared by antisolvent way. 186 mg (0.81 mmol) SbCl₃ and 277 mg (1.62 mmol) 2,4,6-trimethylbenzenamine chloride were dissolved into 3 mL DMF in a 5 mL glass bottle and stirred for about 10 minutes to form the clear precursor solutions. Then, the glass bottle containing 1 mL of precursor solution was placed in a large test tube containing 3 mL acetone and sealed in the refrigerator for 3-4 days. Finally, the glass bottle was placed in a large test tube containing 3 mL anhydrous diethyl ether and sealed in the refrigerator for 2 days to obtain transparent single crystal. The in-situ synthesis reaction of Schiff's base is verified by hydrogen nuclear magnetic resonance (H-NMR) and carbon nuclear magnetic resonance (C-NMR). ¹H NMR (600 MHz, DMSO-d₆) δ /ppm: 7.08 (s, 2H), 2.80 (s, 3H), 2.29 (s, 3H), 2.20 (s, 3H), 2.13 (s, 6H). ¹³C NMR (151 MHz, DMSO-d₆) δ /ppm: 194.12, 138.97, 132.24, 131.42, 129.30, 24.91, 22.03, 20.50, 17.23.

Measurements and Instruments: The structure data of single crystal was collected by the direct method using SHELXS-97 and refined using software of VESTA. PXRD data were recorded using a Bruker D8 Advance XRD using Cu Kα radiation (1.54 Å). A UV-vis spectrophotometer (LAMBDA 950, PerkinElmer) was used to collect the absorption spectra. The PL spectra, the temperature-dependent PL spectra, the time-resolved photoluminescence (TRPL) spectra and PLQY were measured for the powder sample using FLS980, Edinburgh Instruments. The thermogravimetric analysis (TGA) was recorded from R.T. to 800°C using a TA Instruments TGAQ500 with nitrogen atmosphere. ¹H

NMR spectra and ¹³C NMR were recorded at 298 K on a Bruker AVANCE III 600MHz NMR Spectrometer in designated deuterated solvent.

UV pumped LEDs based on (NII)₂**SbCl**₅: First, the (NII)₂SbCl₅ phosphors were obtained by grinding (NII)₂SbCl₅ single crystals. Then, blue phosphor (BaMgAl₁₀O₁₇:Eu²⁺), green phosphor (Ba₂SiO₄:Eu²⁺) and (NII)₂SbCl₅ phosphors were mixed in ratio of 6:1.3:18, and were blended with Sylgard 184 polydimethylsiloxane (PDMS) encapsulant. Finally, the phosphors doped PDMS were coated on a commercial UV-LED (365 nm) lamp and then the whole mold was heated at 100°C for 1 hour in an oven to cure PDMS. This is the entire process about fabrication UV pumped LEDs based on (NII)₂SbCl₅.

DFT methods: Density functional theory (DFT) calculations were performed using the projectoraugmented wave (PAW) method implemented in the VASP code.^[1, 2] The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and a uniform $3 \times 4 \times 2 k$ -mesh grid in the Brillouin zone were employed to optimize the crystal structure of (NII)₂SbCl₅. The atomic positions of (NII)₂SbCl₅ were fully relaxed until the forces on each atom less than 0.01 eV/Å. The Heyd-Scuseria-Ernzerhof hybrid functional (HSE06, $\alpha = 0.2$) was used to calculate the electronic bands, projected density of states (PDOS), and charge densities for (NII)₂SbCl₅. The plane-wave basis set cutoff of the wave functions was set at 450 eV for the structural optimization at GGA/PBE level and 350 eV for the electronic bands and PDOS calculations at HSE06 level.

2. Figure sections

Figure S1 The synthetic route about NII⁺ cation.

Figure S2 The information of (a) H-NMR spectroscopy and (b) C-NMR spectroscopy about $(NII)_2SbCl_5$ in DMSO-d₆.

Figure S3 X-ray photoelectron spectroscopic (XPS) analysis of (NII)₂SbCl₅ powders.

Figure S4 PLQY spectrum of (NII)₂SbCl₅ crystal under excitation of 365 nm

Figure S5 (a) Excitation-wavelength-dependent photoluminescence (PL) spectra of (NII)₂SbCl₅. (b) Emission-wavelength-dependent photoluminescence excitation (PLE) spectra of (NII)₂SbCl₅.

Figure S6 PL spectrum of bulk and powder crystals.

Figure S7 The thermogravimetric analysis (TGA) of (NII)₂SbCl_{5.}

3.Table section

Compounds	λ _{em} (nm)	Lifetime (µs)	PLQY (%)	Ref
(Bzmim) ₃ SbCl ₆	525	2.4	87.5	[3]
(Bzmim) ₂ SbCl ₅	600	2.6	22.3	[3]
(TTA) ₂ SbCl ₅	625	7.49	86	[4]
(TEBA) ₂ SbCl ₅	590	7.73	98	[4]
(TMA) ₂ SbCl ₅ ·DMF	630	6.62	67	[5]
(TPA) ₂ SbCl ₅	610	5.3	95	[6]
$(C_{13}H_{22}N)_2Sb_2Cl_8$	865	1.87	5	[7]
$(C_{10}H_{16}N)_2Sb_2Cl_8$	990	1.58	3	[7]
$(C_{16}H_{36}P)SbCl_4$	1070	1.34	1	[7]
(C ₁₆ H ₂₈ N) ₂ SbCl ₅	633	4.71	98	[8]
(2cepyH)SbCl ₄	570	6.85	5	[9]

 Table S1 Summary of the optical properties of the Sb-based organic-inorganic hybrid metal halides.

Empirical formula	C ₂₄ H ₃₆ Cl ₅ N ₂ Sb		
Formula weight	651.55		
Temperature (K)	296(2)		
Crystal system	monoclinic		
Space group	$P2_1/n$		
a/Å	13.916		
b/Å	8.620		
c/Å	26.092		
α/°	90		
β/°	102.084		
$\gamma/^{\circ}$	90		
Volume/Å ³	3060.5(13)		
Z	4		
Density _(calc) g/cm ³	1.414		
μ(mm ⁻¹)	1.352		
F(000)	1320		
Crystal size/mm ³	0.200×0.200×0.200		
Radiation	ΜοΚα(λ=0.71073)		
Theta range for data collection/°	2.494 to 24.995		
Index ranges	-16≤h≤16, -10≤k≤9, -30≤l≤30		
Reflections collected	45617		
Independent reflections	5358 [$R_{int} = 0.0686$]		
Data / restraints / parameters	5358 / 0 / 299		
Goodness-of-fit on F ²	1.072		
Final R indices [I>2 σ (I)]	$R_1 = 0.0512, wR_2 = 0.1372$		
R indices [all data]	$R_1 = 0.0816, wR_2 = 0.1531$		
Largest diff. peak and hole/ e Å ⁻³	1.284 and -0.523		
The CCDC number	2210581		

 Table S2 Crystal data for (NII)₂SbCl₅ single crystal.

Bonds	Angle/°	Bond	Length/Å
Cl1-Sb1-Cl2	92.26	Sb1-Cl3	2.3781
Cl1-Sb1-Cl5	85.52	Sb1-Cl2	2.7668
Cl5-Sb1-Cl4	90.17	Sb1-Cl1	2.6671
Cl4-Sb1-Cl2	92.04	Sb1-C15	2.536
Cl1-Sb1-Cl3	89.53	Sb1-Cl4	2.5323
Cl5-Sb1-Cl3	89.31		
Cl4-Sb1-Cl3	90.59		
Cl2-Sb1-Cl3	84.24		
Cl4-Sb1-Cl1	175.69		
Cl5-Sb1-Cl2	173.20		

Table S3 Band angle and length for $(NII)_2SbCl_5$

Reference

- [1] G. Kresse and J. Hafner, *Phys. Rev. B* 1993, 48, 13115-13118.
- [2] G. Kresse and J. Furthmuller, Phys. Rev. B 1996, 54, 11169-11186.
- [3] Z. Wang, Z. Zhang, L. Tao, N. Shen, B. Hu, L. Gong, J. Li, X. Chen and X. Huang, Angew. Chem. Int. Ed 2019, 58, 9974-9978.
- [4] Z. Li, Y. Li, P. Liang, T. Zhou, L. Wang and R.-J. Xie, Chem. Mater. 2019, 31, 9363-9371.
- [5] Q. Wei, T. Chang, R. Zeng, S. Cao, J. Zhao, X. Han, L. Wang and B. Zou, *J. Phys. Chem. Lett.* 2021, 12, 7091-7099.
- [6] H. Peng, Y. Tian, X. Wang, T. Huang, Y. Xiao, T. Dong, J. Hu, J. Wang and B. Zou, J. Mater. Chem. C 2021, 9, 12184-12190.
- [7] B. Su, S. Geng, Z. Xiao and Z. Xia, Angew. Chem. Int. Ed 2022, 61, e202208881.
- [8] H. Peng, Y. Tian, Z. Yu, X. Wang, B. Ke, Y. Zhao, T. Dong, J. Wang and B. Zou, Sci. China Mater 2022, 65, 1594-1600.
- [9] Z. Qi, Y. Chen, H. Gao, F.-Q. Zhang, S.-L. Li and X.-M. Zhang, *Sci China Chem* 2021, 64, 2111-2117.