Anchoring 0D $Cd_{0.5}Zn_{0.5}S$ nanoparticles on 3D porous N-doped $Ti_3C_2T_x$ MXene matrix for efficient photocatalytic hydrogen evolution

Ming Du¹, Shilei Ji¹, Canhui Qian², Lutao Li¹, Wei Chen³, Huajie Huang⁴, Jianping Yang², Jian Zhang^{1,2*}, Xinbao

Zhu⁵, Xing'ao Li^{1,2,6}*

* Corresponding author E-mail address: iamjzhang@njupt.edu.cn; lixa@njupt.edu.cn

1 New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts

& Telecommunications (NUPT), Nanjing 210023, P. R. China

2 State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials

(IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China

3 School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang Province,

P. R. China

4 College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China.

5 College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.

6 School of Physics and Electronic Engineering, Hainan Normal University, Haikou, Hainan 571158, P. R. China

Present address: Nanjing University of Posts and Telecommunications Xianlin Campus, 9# Wenyuan Road, Qixia District, Nanjing

Fig. S1 Schematic illustration for the fabrication of $Ti_3C_2T_x$ MXene nanoflakes.

Fig. S2 SEM images of bulk Ti_3AlC_2 MAX.

Fig. S3 SEM images of CZS nanoparticles.

Fig. S4 XRD patterns of the $Ti_3AlC_2\,MAX$ and the fabrication of $Ti_3C_2T_x\,MX$ ene.

Fig. S5. FT-IR spectra of CZS, N-TCT@CZS composites, and N-TCT.

Fig. S6 XPS survey spectra of CZS, N-TCT MXene and N-TCT@CZS-3.

Fig. S7 High-resolution XPS spectra of Zn 2p.

Fig. S8 High-resolution XPS spectra of C 1s.

Fig. S9 AFM images of TCT MXene nanoflakes.

Fig. S10 the local magnification of HRTEM images of TCT MXene nanoflakes.

Fig. S11 TEM images of CZS nanoparticles.

Fig. S12 The photocatalytic hydrogen evolution rate of TCT@CZS

Fig. S13 The AQE values of N-TCT@CZS at different wavelength.

Fig. 14 XRD patterns of N-TCT@CZS-3 before and after stability test.

Fig. 15 SEM of N-TCT@CZS-3 after stability test.

Fig. 16 SEM of N-TCT@CZS-3 after stability test.

Fig. S17. The density of states of the N-TCT@CZS.

Fig. S18. The SEM of the TCT@CZS (TCT: CZS= 4: 1).

Fig. S19. The TEM of the TCT@CZS (TCT: CZS=4:1).

Photocatalyst	Light source	sacrificial agent	H ₂ evolution	H ₂ production	Ref.
			rate (mmol $h^{-1}g^{-1}$)	AQE (%)	
MXene/ZnIn ₂ S ₄	300 W Xe lamp	triethanolamine	3.475	11.14	1
	(<i>λ</i> ≥400 nm)			(λ=420 nm)	
MXene/CdS	300 W Xe lamp	benzylamine	0.220	None	2
	(<i>λ</i> ≥420 nm)				
MXene/CdS/Au	300 W Xe lamp	lactic acid	5.371	16.70	3
	(<i>λ</i> ≥400 nm)			(λ=420 nm)	
MXene/Ru/g-C ₃ N ₄	300 W Xe lamp	TEOA	3.21	30.9	4
	(<i>λ</i> ≥380 nm)			(λ=380 nm)	
MXene/TiO ₂	300 W Xe lamp	TEOA	4.672	27.11	5
	$(\lambda \geq 380 \text{ nm})^{-1}$			(λ=380 nm)	
MXene/UiO-66-NH ₂	300 W Xe lamp	TEOA	2.187	None	6
(Zr/Ti)	$(\lambda \geq 400 \text{ nm})^{-1}$				
MXene/CdS/C	300 W Xe lamp	TEOA	5.64	45.70	7
	-			(λ=450 nm)	
MXene/ZnIn ₂ S ₄	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	3.058	17.68	8
	$(\lambda \geq 400 \text{ nm})^{-1}$			(λ=420 nm)	
MXene@TiO ₂ /ZnIn ₂ S ₄	350 W Xe lamp	Na ₂ S/Na ₂ SO ₃	1.18	None	9
	(<i>λ</i> ≥420 nm).				
MXene/TiO ₂ /Ru	300 W Xe lamp	TEOA	0.235	14.33	10
	$(\lambda \geq 350 \text{ nm}).$			(λ=350 nm)	
MXene@TiO ₂ @MoS ₂	300 W Xe lamp	TEOA	6.425	4.61	11
	$(\lambda \geq 400 \text{ nm})$			(λ=400 nm)	
MXene@TiO2@WS2	300 W Xe lamp	TEOA	3.409	2.464	12

Table S1. Comparison of the photocatalytic H₂ evolution activity for some previous reports MXene-based photocatalysts

				(λ=400nm)	
MXene/g-C ₃ N ₄	300 W Xe lamp	TEOA	5.111	3.654	13
_	(<i>λ</i> ≥400 nm)			(λ=400nm)	
MXene/TiO ₂ /PtO	300 W Xe lamp	methanol	2.54	4.2	14
	(<i>λ</i> ≥420 nm)			(λ=365nm)	
MXene/CdS	300 W Xe lamp	methanol	4.235	2.28	15
	(<i>λ</i> ≥400 nm)			(λ=400nm)	
MXene/CdSe	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	0.763	1.30	16
	(<i>λ</i> ≥400 nm)			(λ=400nm)	
MXene/Cd _{0.5} Zn _{0.5} S	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	10.90	22.07	This
	(<i>λ</i> ≥400 nm)			(λ=400nm)	work

Table S2. Comparison of the photocatalytic H_2 evolution activity for some previous reports CdZnS-based photocatalysts

Photocatalyst	Light source	sacrificial agent	H ₂ evolution	H ₂ production	Ref.
			rate (mmol $h^{-1}g^{-1}$)	AQE (%)	
Cd _{0.5} Zn _{0.5} S/CoPPi-M	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	6.87	20.7	17
	(<i>λ</i> ≥400 nm)			(λ=420 nm)	
PtSA-Cd _{0.5} Zn _{0.5} S	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	0.279	None	18
	(<i>λ</i> ≥420 nm)				
$Cd_{0.5}Zn_{0.5}S/Bi_2Fe_4O_9$	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	0.811	None	19
	(<i>λ</i> ≥420 nm)				
In ₂ O ₃ /CdZnS	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	1.11	30.9	20
	(<i>λ</i> ≥380 nm)			(λ=380 nm)	
Cu ₂ S/CdZnS	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	5.904	2.13	21
	(<i>λ</i> ≥420 nm)			(λ=400 nm)	
Cu-MOF/Cd _{0.5} Zn _{0.5} S	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	5.301	None	22
	(<i>λ</i> ≥400 nm)				
Cd _{0.5} Zn _{0.5} S/CuInS ₂	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	7.73	0.61	23
				(λ=420 nm)	
Ni/NiS/Zn _{0.2} Cd _{0.8} S	350 W Xe lamp	lactic acid	4.151	None	24
	(<i>λ</i> ≥420 nm).				
MXene/Cd _{0.5} Zn _{0.5} S	300 W Xe lamp	Na ₂ S/Na ₂ SO ₃	10.90	22.07	This
	(<i>λ</i> ≥400 nm)			(λ=400nm)	work

References

- 1 G. Zuo, Y. Wang, W. L. Teo, A. Xie, Y. Guo, Y. Dai, W. Zhou, D. Jana, Q. Xian and W. Dong, *Angewandte Chemie*, 2020, **132**, 11383-11388.
- 2 H. Wang, P. Hu, J. Zhou, M. B. Roeffaers, B. Weng, Y. Wang and H. Ji, *J. Mater. Chem. A*, 2021, **9**, 19984-19993.
- 3 Z. Li, W. Huang, J. Liu, K. Lv and Q. Li, ACS Catal., 2021, **11**, 8510-8520.
- 4 W.-J. Yi, X. Du, M. Zhang, S.-S. Yi, R.-H. Xia, C.-Q. Li, Y. Liu, Z.-Y. Liu, W.-L. Zhang and X.-Z. Yue, Nano Res., 2023, 1-9.

- 5 C. Peng, T. Zhou, P. Wei, H. Ai, B. Zhou, H. Pan, W. Xu, J. Jia, K. Zhang and H. Wang, *Chem. Eng. J.*, 2022, **439**, 135685.
- L. Shi, C. Wu, Y. Wang, Y. Dou, D. Yuan, H. Li, H. Huang, Y. Zhang, I. D. Gates and X. Sun, *Adv. Funct. Mater.*, 2022, **32**, 2202571.
- P. Wei, Y. Chen, T. Zhou, Z. Wang, Y. Zhang, H. Wang, H. Yu, J. Jia, K. Zhang and C. Peng, ACS Catal., 2022, 13, 587-600.
- 8 M. Du, L. Li, S. Ji, T. Wang, Y. Wang, J. Zhang and X. a. Li, J. Mater. Chem. C, 2022, 10, 10636-10644.
- 9 K. Huang, C. Li and X. Meng, J. Colloid Interface Sci., 2020, 580, 669-680.
- 10 Y. Liu, Y.-H. Li, X. Li, Q. Zhang, H. Yu, X. Peng and F. Peng, ACS Nano, 2020, **14**, 14181-14189.
- 11 Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang and H. Cui, *Appl. Catal., B*, 2019, **246**, 12-20.
- 12 Y. Li, L. Ding, S. Yin, Z. Liang, Y. Xue, X. Wang, H. Cui and J. Tian, *Nano-Micro Lett.*, 2020, **12**, 1-12.
- 13 Y. Li, L. Ding, Y. Guo, Z. Liang, H. Cui and J. Tian, ACS Appl. Mater. Interfaces, 2019, 11, 41440-41447.
- J.-X. Yang, W.-B. Yu, C.-F. Li, W.-D. Dong, L.-Q. Jiang, N. Zhou, Z.-P. Zhuang, J. Liu, Z.-Y. Hu and H. Zhao, *Chem. Eng. J.*, 2021, 420, 129695.
- 15 B. Sun, P. Qiu, Z. Liang, Y. Xue, X. Zhang, L. Yang, H. Cui and J. Tian, *Chem. Eng. J.*, 2021, **406**, 127177.
- 16 H. Gu, H. Zhang, X. Wang, Q. Li, S. Chang, Y. Huang, L. Gao, Y. Cui, R. Liu and W.-L. Dai, *Appl. Catal., B*, 2023, 122537.
- 17 L.-J. Gao, C.-C. Weng, Y.-S. Wang, X.-W. Lv, J.-T. Ren and Z.-Y. Yuan, J. Colloid Interface Sci., 2022, 606, 544-555.
- B. Li, C. Guo, X. Wang, W. Dong, B. Xu, X. Xing, D. Zhou, X. Xue, Q. Luan and W. Tang, *Mater. Today Nano*, 2023, 21, 100281.
- 19 H. Hua, F. Feng, M. Du, Y. Ma, Y. Pu, J. Zhang and X. a. Li, *Appl. Surf. Sci.*, 2021, **541**, 148428.
- 20 H. Yang, J. Tang, Y. Luo, X. Zhan, Z. Liang, L. Jiang, H. Hou and W. Yang, *Small*, 2021, **17**, 2102307.
- 21 G. Wang, Y. Quan, K. Yang and Z. Jin, Journal of Materials Science & Technology, 2022, 121, 28-39.
- 22 P. Zhu, C. Feng, Q. Liang, M. Zhou, Z. Li and S. Xu, Ceram. Int., 2023, 49, 20706-20714.
- 23 F. Chen, J. Liao, X. Lu, Y. Xu, X. Jiang and M. Tian, *Appl. Surf. Sci.*, 2023, **621**, 156721.
- 24 Y. Sun, C. Xu, H. Ma, G. Li, L. Chen, Y. Sun, Z. Chen, P. Fang, Q. Fu and C. Pan, *Chem. Eng. J.*, 2021, **406**, 126878.