Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Fig. S1. Element mapping images of MXene/NF.

Fig. S2. (a) SEM image of MXene. (b) XRD spectrum of MXene.

Fig. S3. Brunauer-Emmett-Teller isotherms of $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF and ZIF-L@MXene/NF.

Fig. S4. SEM images of (a), (e) $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF-5$, (b), (f) $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF$, (c), (g) $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF-15$ and (d), (h) $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF-20$.

Fig. S5. SEM image of $Co_2V_2O_6 \cdot 2H_2O/ZIF$ -L/NF.

Fig. S6. TEM image of $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF.

Fig. S7. OER performance: LSV polarization curves of $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF obtained by 5 s, 10 s, 15 s and 20 s reaction times.

Fig. S8. OER performance: CV curves recorded at different scan rates within the non-Faradaic potential range for (a) NF, (b) MXene/NF, (c) ZIF-L@MXene/NF, (d) $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF and (e) $Co_2V_2O_6$ ·2H₂O/ZIF-L/NF.

Fig. S9. SEM images of $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF after OER 1000 CV cycles.

Fig. S10. (a) XRD spectrum of $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF$ before and after 1000 cycles. (b) XPS survey spectra of $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF$ before and after 1000 cycles. XPS spectra of (c) Co 2p and (d) O 1s of different catalysts before and after 1000 cycles.

Fig. S11. HER performance: LSV polarization curves of $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF obtained at 5 s, 10 s, 15 s and 20 s reaction times.

Fig. S12. HER performance: CV curves recorded at different scan rates within the non-Faradaic potential range for (a) NF, (b) MXene/NF, (c) ZIF-L@MXene/NF, (d) $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF and (e) $Co_2V_2O_6$ ·2H₂O/ZIF-L/NF.

Fig. S13. SEM images of Co₂V₂O₆·2H₂O/ZIF-L@MXene/NF after HER 1000 CV cycles.

Fig. S14. (a) XRD spectrum of $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF$ before and after HER 1000 cycles. (b) XPS survey spectra of $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF$ before and after HER 1000 cycles. XPS spectra of (c) Co 2p and (d) O 1s of different catalysts before and after HER 1000 cycles.

Fig. S15. Corresponding gas volume generated at (a) 0 s, (b) 400 s, (c) 800 s, (d) 1200 s, (e) 1600 s and (f) 2000 s.

Table S1. Comparison of the OER activities between $Co_2V_2O_6$ ·2H₂O/ZIF-L@MXene/NF in this work and various electrocatalysts recently reported.

Materials	η50 (mV)	Electrolyte	Ref
This work	224	1.0 M KOH	This work
V-CoP	300	1.0 M KOH	[1]
Ru-CoV-LDH/NF	290	1.0 M KOH	[2]
CoV/CF-CWs	230	1.0 M KOH	[3]
Ti ₃ C ₂ T _x MXene	310	1.0 M KOH	[4]
@NiCo ₂ (OH) _{x-p}			
Ti ₃ C ₂ @SrTiO ₃	400	1.0 M KOH	[5]

Table S2. Comparison of the HER activities between $Co_2V_2O_6 \cdot 2H_2O/ZIF-L@MXene/NF$ in this work and various electrocatalysts recently reported.

Materials	η10 (mV)	Electrolyte	Ref
This work	98	1.0 M KOH	This work
Co ₃ O ₄ /Ti ₃ C ₂	124	1.0 M KOH	[6]
MXene			
NiFeP/Ti ₃ C ₂	122	1.0 M KOH	[7]
Mxene			
MoNiS/Mo ₂ TiC ₂ T	153	1.0 M KOH	[8]
X			
MX@RG	121	1.0 M KOH	[9]
MXene@Ce-MOF	220	1.0 M KOH	[10]

Table S3. Comparison of the OWS activities between $Co_2V_2O_6$ ·2H₂O/ZIF-

L@M	Xene/NF	in this v	work and	various e	lectrocatal	lysts	recently	y reported	ι.
-----	---------	-----------	----------	-----------	-------------	-------	----------	------------	----

Materials	η10 (mV)	Electrolyte	Ref
This work	1.478	1.0 M KOH	This work
CoVS NBs	1.56	1.0 M KOH	[11]
MOF-V-Ni ₃ S ₂ /NF	1.58	1.0 M KOH	[12]
NiCoVP	1.5	1.0 M KOH	[13]
V-doped CoP/NF	1.53	1.0 M KOH	[14]
CP-NCP-T	1.54	1.0 M KOH	[15]

References

[1] R. Zhang, Z. Wei, G. Ye, G. Chen, J. Miao, X. Zhou, X. Zhu, X. Cao, X. Sun, "d-Electron

Complementation" Induced V-Co Phosphide for Efficient Overall Water Splitting, Adv. Energy Mater. 11 (38) (2021) 2101758.

- [2] W. Li, B. Feng, L. Yi, J. Li, W. Hu, Highly Efficient Alkaline Water Splitting with Ru-Doped Co-V Layered Double Hydroxide Nanosheets as a Bifunctional Electrocatalyst, ChemSusChem 14 (2) (2021) 730-737.
- [3] Z. Li, J. Yang, Z. Chen, C. Zheng, L.Q. Wei, Y. Yan, H. Hu, M. Wu, Z. Hu, V "Bridged" Co-O to Eliminate Charge Transfer Barriers and Drive Lattice Oxygen Oxidation during Water-Splitting, Adv. Funct. Mater. 31 (9) (2020) 2008822.
- [4] J. Xu, X. Zhong, X. Wu, Y. Wang, S. Feng, Optimizing the electronic spin state and delocalized electron of NiCo₂(OH)/MXene composite by interface engineering and plasma boosting oxygen evolution reaction, J. Energy Chem. 71 (2022) 129-140.
- [5] X. Hui, P. Zhang, Z. Wang, D. Zhao, Z. Li, Z. Zhang, C. Wang, L. Yin, Vacancy Defect-Rich Perovskite SrTiO₃/Ti₃C₂ Heterostructures In Situ Derived from Ti₃C₂ MXenes with Exceptional Oxygen Catalytic Activity for Advanced Zn–Air Batteries, ACS Appl. Energy Mater. 5 (5) (2022) 6100-6109.
- [6] Y. Zhang, Z. Zhang, A. Addad, Q. Wang, P. Roussel, M.A. Amin, S. Szunerits, R. Boukherroub, 0D/2D Co₃O₄/Ti₃C₂ MXene Composite: A Dual-Functional Electrocatalyst for Energy-Saving Hydrogen Production and Urea Oxidation, ACS Appl. Energy Mater. 5 (12) (2022) 15471-15482.
- [7] Y. Hou, Z. Yuan, X. Yu, B. Ma, L. Zhao, D. Kong, Directly preparing well-dispersed ultra-hydrophilic NiFeP nanoparticle/Mxene complexes from spent electroless Ni plating solution as efficient hydrogen evolution catalysts, J. Environ. Chem. Eng. 11 (3) (2023) 109738.
- [8] J. Zhang, W. Zhang, J. Zhang, Y. Li, Y. Wang, L. Yang, S. Yin, MOF-derived bimetallic NiMo-based sulfide electrocatalysts for efficient hydrogen evolution reaction in alkaline media, J. Alloys Compd. 935 (2023) 167974.
- [9] V. Thirumal, R. Yuvakkumar, P.S. Kumar, G. Ravi, A. Arun, R.K. Guduru, D. Velauthapillai, Heterostructured two dimensional materials of MXene and graphene by hydrothermal method for efficient hydrogen production and HER activities, Int. J. Hydrog. Energy 48(17) (2023) 6478-6487.
- [10] S. Li, H. Chai, L. Zhang, Y. Xu, Y. Jiao, J. Chen, Constructing oxygen vacancy-rich MXene@Ce-MOF composites for enhanced energy storage and conversion, J. Colloid Interface Sci. 642 (2023) 235-245.
- [11] C. Wang, H. Xu, Y. Wang, H. Shang, L. Jin, F. Ren, T. Song, J. Guo, Y. Du, Hollow V-Doped CoM_x (M

= P, S, O) Nanoboxes as Efficient OER Electrocatalysts for Overall Water Splitting, Inorg. Chem. 59 (16) (2020) 11814-11822.

- [12] W. Dong, H. Zhou, B. Mao, Z. Zhang, Y. Liu, Y. Liu, F. Li, D. Zhang, D. Zhang, W. Shi, Efficient MOFderived V–Ni₃S₂ nanosheet arrays for electrocatalytic overall water splitting in alkali, Int. J. Hydrog. Energy 46 (18) (2021) 10773-10782.
- [13] Y. Jeung, H. Jung, D. Kim, H. Roh, C. Lim, J.W. Han, K. Yong, 2D-structured V-doped Ni(Co,Fe) phosphides with enhanced charge transfer and reactive sites for highly efficient overall water splitting electrocatalysts, J. Mater. Chem. A 9 (20) (2021) 12203-12213.
- [14] H. Xue, A. Meng, H. Zhang, Y. Lin, Z. Li, C. Wang, 3D urchin like V-doped CoP in situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting, Nano Res. 14 (11) (2021) 4173-4181.
- [15] D. Xu, Z. Kang, H. Zhao, Y. Ji, W. Yao, D. Ye, J. Zhang, Coupling heterostructured CoP-NiCoP nanopin arrays with MXene (Ti₃C₂T_x) as an efficient bifunctional electrocatalyst for overall water splitting, J. Colloid Interface Sci. 639 (2023) 223-232.