Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Tunable luminescence in Eu³⁺/Sm³⁺ single-doped LuNbO₄ for optical thermometry and anti-counterfeiting

Yuqi Chen^a, Yu Xue^a, Qinan Mao^a, Lang Pei^a, Yang Ding^a, Yiwen Zhu^a, Meijiao Liu^b,

Jiasong Zhong ^{a*}

^a Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

^b Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

Corresponding authors: E-mail: jiasongzhong@hdu.edu.cn (J. Zhong)

Fig. S1 The average size of (a) LNO:0.05Eu³⁺, (b) LNO:0.05Sm³⁺ phosphors.

Fig. S2 (a) XPS of LNO:0.05 Eu³⁺/Sm³⁺ phosphors. (b) Magnified XPS spectra of Eu 3d and Sm 3d electron for LNO:0.05 Eu³⁺/Sm³⁺ phosphors.

Fig. S3 luminescence photographs of the LNO: xEu^{3+}/ySm^{3+} ($0 \le x \le 0.07$, $0 \le y \le 0.07$) upon the daylight or UV lamp ($\lambda_{ex}=261$ nm).

Fig. S4 The PL decay curves of the (a) LNO: $0.05Eu^{3+}$ (λ_{ex} =394 nm, λ_{em} =612 nm), (b) LNO: $0.05Sm^{3+}$ (λ_{ex} =404 nm, λ_{em} =615 nm) phosphors.

Fig. S5 The temperature-dependence PL spectra upon 261 nm excitation and corresponding contour map of thermal evolution PL spectra and host, Eu³⁺/Sm³⁺ normalized emission at various temperatures images of (a-c) LNO:0.005Eu³⁺, (d-f) LNO:0.005Sm³⁺.

Fig. S6 The integrated PL intensities of the LNO: xEu^{3+} (x=0.001, 0.005) and LNO: ySm^{3+} (y=0.001, 0.005) and the corresponding activation energy.

Fig. S7 (a-b) The temperature-dependence PL spectra of LNO:0.001Eu³⁺/Sm³⁺ under the excitation of 394 and 404 nm, respectively. (c) Integrated emission intensity of Eu³⁺/Sm³⁺ for LNO:0.001Eu³⁺/Sm³⁺ phosphors.

Fig. S8 (a) The fitting curve of temperature-dependent FIR (I_{host}/I_{Eu} and I_{host}/I_{Sm}). (b-c) The S_a , S_r values with different temperatures for LNO:0.005Eu³⁺/Sm³⁺, respectively.

Fig. S9 XRD patterns of obtained LNO:0.001Eu³⁺ and LNO:0.005Sm³⁺ phosphors before and after six cycles.

Fig. S10 Photographs of the LNO: xEu³⁺/ySm³⁺ samples upon 261 and 365 nm light excitation with different Eu³⁺/Sm³⁺ doping concentrations.

Fig. S11 The photographs of LNO:0.005Eu³⁺/Sm³⁺-PDMS films upon 365 nm excitations from 303 to 453K and the corresponding thermographs.

	LNO:xEu ³⁺							
	x=0	x=0.001	x=0.005	x=0.01	x=0.02	x=0.03	x=0.05	x=0.07
a, Å	5.2319	5.2329	5.2341	5.2351	5.238	5.2355	5.2412	5.2423
b, Å	10.831	10.834	10.8359	10.8376	10.8402	10.8467	10.8512	10.8533
<i>с</i> , Å	5.0441	5.0449	5.0461	5.047	5.0481	5.0492	5.0504	5.052
α	90	90	90	90	90	90	90	90
β	94.4184	94.4181	94.4147	94.412	94.41	94.398	94.391	94.387
γ	90	90	90	90	90	90	90	90
V, Å ³	284.984	285.1985	285.3354	285.4969	285.8226	286.1728	286.3305	286.5904
R_{wp}	8.31	8.29	7.919	8.498	7.801	7.89	7.86	7.834
R_p	6.353	6.365	6.158	6.54	6.048	5.861	6.04	5.82
<i>x</i> ²	1.327	1.852	1.734	1.871	1.667	1.634	1.67	1.709

Table S1 Rietveld refinement data of the LNO:xEu3+ ($0 \le x \le 0.07$) samples

Table S2 Rietveld refinement data of the LNO: ySm^{3+} ($0 \le x \le 0.07$) samples

	LNO:ySm ³⁺							
	y=0	y=0.001	y=0.005	y=0.01	y=0.02	y=0.03	y=0.05	y=0.07
a, Å	5.2319	5.23495	5.23517	5.2371	5.2399	5.2401	5.2421	5.2439
b, Å	10.831	10.8372	10.8378	10.8425	10.8478	10.849	10.8519	10.8581
<i>с</i> , Å	5.0441	5.04694	5.04695	5.04809	5.0475	5.0486	5.0499	5.053
α	90	90	90	90	90	90	90	90
β	94.4184	94.4178	94.4167	94.4158	94.41	94.4060	94.4050	90.4010
γ	90	90	90	90	90	90	90	90
V, Å ³	284.984	285.4737	285.501	285.7983	286.0594	286.2905	286.5213	286.8672
R_{wp}	8.31	7.384	6.52	6.186	7.014	6.122	7.472	7.749
R_p	6.353	5.775	5.007	4.788	5.469	4.708	5.390	5.527
x^2	1.327	1.476	1.311	1.267	1.47	1.33	1.479	1.669

Sample	Element	Weight(%)	Atomic(%)	Error(%)
	Lu	19.72	3.13	5.56
LNO 0.05E3+	Nb	27.79	8.29	5.47
LNO:0.05Eu	0	50.94	88.3	9.62
	Eu	1.54	0.28	14.54

 Table S3 The EDS elemental analysis of LNO:0.05Eu³⁺ sample

 Table S4 The EDS elemental analysis of LNO:0.05Sm³⁺ sample

Sample	Element	Weight(%)	Atomic(%)	Error(%)	
	Lu	31.96	5.86	3.84	
LNO:0.05Sm ³⁺	Nb	24.69	8.53	5.96	
	0	42.59	85.45	9.69	
	Sm	0.76	0.16	23.6	

Phorphors	λ _{ex}	Temperature	Sa	Sr	Ref.
	(nm)	range (K)	(K ⁻¹)	(%K ⁻¹)	

$CaNb_2O_6$: Pr^{3+}	270	303-523	0.0049	2.25	[1]
Y _{0.985} Nb _{0.8} Ta _{0.2} O ₄ :Bi ³⁺ ,Eu ³⁺	305	303-523	0.086	1.8	[2]
NaLuO ₄ :Eu ³⁺ @g-C ₃ N ₄	394	303-503	0.0057	0.455	[3]
LuNbO ₄ : Pr^{3+} , Tb ³⁺	305	283-493	0.024	1.26	[4]
$Ba_2LaNbO_6:Mn^{4+}, Eu^{3+}$	396	303-523	0.069	2.08	[5]
Ca ₃ LiMgV ₃ O ₁₂ :Sm ³⁺	332	303-513	9.11	1.99	[6]
Ca ₂ MgWO ₆ :Er ³⁺ ,Yb ³⁺	980	303-573	0.82	0.92	[7]
LuNbO ₄ :0.001Eu ³⁺	261	303-503	0.18	2.45	This work
LuNbO ₄ :0.005Sm ³⁺	261	303-503	0.114	2.49	This work

Reference

- [1] Y. Wang, N. Guo, Y. Xin, J. Li, R. Ou Yang, B. Shao and Y. Miao, *Dalton Trans.*, 2021, 50, 7026-7040.
- [2] Q. Ma, N. Guo, Y. Xin and B. Shao, Inorg. Chem. Front., 2021, 8, 4072-4085.
- [3] P. Du, J. Tang, W. Li, and L. Luo, Chem. Eng. J., 2021, 406, 127165.
- [4] Y. Wu, H. Suo, X. Zhao, Z. Zhou, and C. Guo, Inorg. Chem. Front., 2018, 5, 2456-2461.
- [5] P. Wang, J. Mao, L. Zhao, B. Jiang, C. Xie, Y. Lin, F. Chi, M. Yin and Chen, Y. *Dalton Trans.*, 2019, 48, 10062-10069.
- [6] J. Chen, J. Chen, W. Zhang, S. Xu, L. Chen and H. Guo, Ceram. Int., 2023, 49, 16252-16259.
- [7] Y. Jiang, Y. Tong, S. Chen, W. Zhang, F. Hu, R. Wei, and H. Guo, *Chem. Eng. J.*, 2021, 413, 127470