Supporting Information

Deciphering the proficiency of aliphatic/aromatic functionality on heteroatom embedded planar polycyclic core: towards an advanced onsite detection of Tetracycline and Oxytetracycline

Retwik Parui, ${ }^{1}$ Nehal Zehra, ${ }^{1}$ and Parameswar Krishnan Iyer*1,2
${ }^{1}$ Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati781039, India.
${ }^{2}$ Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati781039, India.

1. Experimental Section

1.1. Materials and methods

All the required precursor materials and other reagents (1,8-Diaminonaphthalene, phenylboronic acid, octyl boronic acid, cyclohexyl boronic acid, benzaldehyde, Nonanal, cyclohexanecarbaldehyde, Tetracycline hydrochloride, Oxytetracycline hydrochloride) were purchased from Sigma Aldrich (INDIA). HPLC grade solvents were purchased from Zenith India and Northeast Chemicals. NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ spectra were recorded with a Varian-AS400 NMR spectrometer or Bruker Avance 600 MHz spectrometer. All solutions for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained taking residual solvent signal as internal reference. Electro spray ionization mass (ESI-MS) spectra were recorded on a Waters (Micro mass MS-Technologies) Q-Tof MS Analyzer spectrometer. Microbalance ($\pm 0.1 \mathrm{mg}$) and volumetric glassware were used for the preparation of solutions. UV/vis and PL spectra were recorded on a Perkin-Elmer Model Lambda-750 spectrophotometer and a Horiba Fluoromax-4 spectrofluorometer respectively using 4 mm quartz cuvettes at 298 K .

1.2. Syntheses of Compounds ${ }^{1}$

Scheme 1 Synthesis procedure for all the congeners

1.2.1. Synthesis of Compounds PHB, OCTB and CYB

At room temperature naphthalene-1,8-diamine (100 mg, $0.633 \mathrm{~m} . \mathrm{mol}$) and phenylboronic acid ($78 \mathrm{mg}, 0.633 \mathrm{~m} . \mathrm{mol}$ for PHB) was taken in 50 mL round bottom flask and 10 mL THF was added as a solvent. Then the mixture was stirred for 15 hours at room temperature. After the reaction was over, the mixture was cooled to room temperature, solvent evaporated using rotatory evaporator under low pressure. The mixture was washed with water and extracted with ethyl acetate. The organic phase was dried over anhydrous sodium sulphate and dried using rotatory evaporator. The residue was purified by column chromatography over silica gel using 2% ethyl acetate in hexane to obtain the pure product. Same procedure was followed with Octyl boronic acid (for OCTB) and cyclohexyl boronic acid (for CYB)

Characterization Data of PHB¹: Grey colored solid (105 mg, 68.08\% yield), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}) .13 \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 141.2,136.5,131.6,130.4,128.4,127.8,120.0,118.0$, 106.2. HRMS (+ ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BN}_{2}, 244.1182$ [M] +.

Characterization Data of OCTB: Light grey colored solid (138 mg, 77.98\% yield), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.09(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.29$ (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $5.60(\mathrm{~s}, 2 \mathrm{H}), 1.45-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87-0.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.4,136.5$, 127.7, 119.7, 117.4, 105.5, 32.7, 32.1, 29.6, 29.4, 24.9, 22.8, 14.3. HRMS (+ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BN}_{2}$, Found $281.2203[\mathrm{M}+\mathrm{H}]+$

Characterization Data of CYB: Dark grey colored solid (102 mg, 64.55\% yield), ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl ${ }_{3}$) $\delta 7.08(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{~d}, \mathrm{~J}$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 5 \mathrm{H}), 0.99-0.93(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4,136.5,127.7,119.7,117.4,105.6,30.5$, 29.0, 27.6, 26.9. HRMS (+ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BN}_{2}$, Found $251.1735[\mathrm{M}+\mathrm{H}]+$.

1.2.2. Syntheses of Compounds PHC, OCTC, and CYC

Naphthalene-1,8-diamine (100 mg, $0.633 \mathrm{~m} . \mathrm{mol}$) and benzaldehyde (193 $\mu \mathrm{L}, 0.633$ for PHC) was taken in 50 mL round bottom flask and 10 mL dry dioxane was added as a solvent under inert condition. The reaction mixture was stirred for 24 h at $90^{\circ} \mathrm{C}$ temperature, followed by evaporation using rotatory evaporator under low pressure. The mixture was washed with water and extracted with ethyl acetate and the organic phase was dried over anhydrous sodium sulphate and evaporated using rotatory evaporator. The residue was purified by column chromatography over silica gel using 3% ethyl acetate in hexane to obtain the pure product. Same procedure was followed with Nonanal acid (for OCTC) and Cyclohexanecarboxaldehyde (for CYC)

Characterization Data of PHC ${ }^{1}$: Light yellow powder ($70 \mathrm{mg}, 44.96 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57(\mathrm{dd}, J=6.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (dd, $J=4.8,1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.46(\mathrm{dd}, \mathrm{J}=7.1,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 142.2, 140.1, 135.0, 129.8, 129.0, 128.1, 127.0, 118.1, 113.6, 106.0, 68.6. HRMS (+ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2}$, Found $247.1230[\mathrm{M}+\mathrm{H}]+$. Characterization Data of OCTC: : Light yellow powder ($83 \mathrm{mg}, 46.57 \%$ yield), ${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl ${ }_{3}$) $\delta 7.23(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.48$
$(\mathrm{m}, 2 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 10 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 142.1, 135.0, 127.0, 117.8, 114.2, 106.0, 65.00, 36.08, 32.0, 29.7, 29.6, 29.3, 24.6, 22.81, 14.3. HRMS (+ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2}$, Found $283.2192[\mathrm{M}+\mathrm{H}]+$.

Characterization Data of CYC: : Pale yellow powder ($78 \mathrm{mg}, 48.97 \%$ yield), ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.80$ $(m, 2 H), 1.75-1.72(m, 1 H), 1.67-1.62(m, 1 H), 1.32-1.26(m, 2 H), 1.24-1.16$ ($\mathrm{m}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 142.1,135.0,127.0,117.4,113.9,105.8$, 69.1, 42.3, 28.0, 26.5, 26.1. HRMS (+ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2}$, Found 253.1709 $[\mathrm{M}+\mathrm{H}]+$.

1.3. Fluorescence quantum yield calculation:

Quinine sulphate ($\Phi_{\mathrm{r}}=0.52$ in $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$) was used as a reference to record the fluorescence quantum yield of all the probes in solution state (methanol) and aggregate state (water). Quantum yield values were calculated using below equation.

$$
\Phi_{s}=\Phi_{r}\left(A_{r} E_{s} / A_{s} E_{r}\right)\left(\eta_{s}^{2} / \eta_{r}^{2}\right)
$$

Here, 's' and 'r' mentioned in the subscript, denote the sample and reference fluorophore respectively. A and E represent Absorbance and Integrated fluorescence emission intensity. η signifies refractive index of the solvent.

1.4. Sensing Studies

10 mM stock solution of OCTB was prepared by using methanol as a good solvent. Next stock solution was diluted into $20 \mu \mathrm{M}$ nano-aggregate solution using HEPES buffer as a bad solvent which further used for the sensing studies. The emission spectra of OCTB nano-aggregates was recorded under 330 nm excitation at slit 3 in
a 3 ml cuvette. After this, the change in the fluorescence intensity was recorded with instant addition of the tetracycline and oxytetracycline stock (similarly prepared in water using their hydrochloride salt) up to $260 \mu \mathrm{M}$. The same procedure has been implied for the interference study. Later, the decrement in the fluorescence intensity was further quantified using smartphone application named "Color Picker" under 365 nm light which provide a prototype platform for the rapid detection of these antibiotics.

2. Theoretical Data

Figure S1 Calculated ground state HOMO-LUMO energy profile and distribution of electronic density in gaseous phase for all the probes using DFT with B3LYP/6-31G set in in the Gaussian 09 package.

3. Experimental Data

Figure S2 UV/visible spectra of (a)PHB, (b)OCTB (c)CYB (a^{1}) PHC (b^{1}) OCTC (c ${ }^{1}$) CYC in MeOH (black) and 99.9\% water fraction (red)

Table S1 Summarization of optical properties

Name	Excitation $\left(\lambda_{\mathrm{ex}}\right)$ (nm)	Emission in solution $\left(\lambda_{\mathrm{em} 1}\right)$ (nm)	Emission in Aggregate($\left.\lambda_{\mathrm{em} 2}\right)$ (nm)	QY (solution) $(\%)$	QY (aggregate) $(\%)$
PHB	330	500	450	0.124	0.885
OCTB	330	390	425	34.664	11.402
CYB	330	389	420	25.992	8.515
PHC	330	390	410	8.632	3.135
OCTC	345	390	410	9.539	1.804
CYC	344	392	412	8.116	11.335

Figure S3 Normalized emission spectra of (a)PHB, (b)OCTB (c)CYB (d)PHC (e)OCTC (f)CYC in various solvents with different polarity

Figure S4. FESEM image of (a)PHB, (b)OCTB (c)CYB (d)PHC (e)OCTC (f)CYC nano-aggregate prepared using drop casting method on aluminum foil/ silicon wafer in the 99.9% water fraction $\left(f_{w}\right)$ in methanol.

Figure S5 Size distribution of nanoaggregates (a)OCTB (b)OCTC (c)CYB (d)CYC (e)PHB measured by dynamic light scattering in 99.9% water fraction at $25^{\circ} \mathrm{C}$

Figure S6 Powder XRD pattern of all the probes. Inset images are the magnified representation of the corresponding spectra.

Figure S7 Comparison of simulated and experimental Powder XRD pattern for (a) PHC, (b) PHB, (c) OCTB.

Figure S8 Intermolecular packing arrangements for OCTB along c axis

Figure S9 (a) Comparison of Powder XRD pattern between OCTB and OCTC. (b) magnified PXRD pattern from 2θ value 30-40.

Table S2. Single Crystal Data and Parameters of all the obtained crystals
$\left.\begin{array}{|l|l|l|l|}\hline \text { Compound code } & \text { OCTB } & \text { PHC } & \text { PHB } \\ \hline \text { CCDC } & 2210041 & 2210045 & 2210065 \\ \hline \text { Empirical Formula } & \text { C18 H25 B N2 } & \text { C17 H14 N2 } & \text { C32 H26 B2 N4 } \\ \hline \text { Formula Weight } & 280.21 & 246.30 & 488.19 \\ \hline \text { Temperature } & 296 \mathrm{~K} & 273 \mathrm{~K} & 296 \mathrm{~K} \\ \hline \text { Wavelength } & 0.71073 & \text { monoclinic } & \text { monoclinic } \\ \hline \text { Crystal System } & \text { triclinic } & \text { P 21/c } & \text { P 21 } \\ \hline \text { Space Group } & \text { b=7.71073 } \\ \text { Unit Cell } \\ \text { Dimension } & \text { c=12.555(3) } \\ \text { alpha=93.164(8) }\end{array} \quad \begin{array}{l}\text { b=8.688(2) } \\ \text { alpha=90 }\end{array}\right)$

	$\begin{aligned} & \text { beta=90.771(8) } \\ & \text { gamma=93.010(9) } \end{aligned}$	$\begin{aligned} & \text { beta=116.872(4) } \\ & \text { gamma=90 } \end{aligned}$	$\begin{aligned} & \text { beta=117.600(2) } \\ & \text { gamma=90 } \end{aligned}$
Volume	825.1(4)	1284.0(6)	625.47(10)
Z	2	4	1
Absorption coefficient	0.065	0.076	0.076
F (000)	304.0	520.0	256.0
Theta range for data collection	1.632-24.983	1.809-27.434	1.952-24.996
Index Range	$\begin{aligned} & -9<=\mathrm{h}<=9, \\ & -10<=\mathrm{k}<=10, \\ & -14<=\mid<=14 \end{aligned}$	$\begin{aligned} & -16<=h<=16, \\ & -11<=k<=11, \\ & -16<=\mid<=16 \end{aligned}$	$\begin{aligned} & -13<=\mathrm{h}<=13, \\ & -6<=\mathrm{k}<=6, \\ & -13<=\mid<=13 \end{aligned}$
Reflections Collected/unique	$\begin{aligned} & 23148 / 2890\left(\mathrm{R}_{\mathrm{int}}=\right. \\ & 0.0290) \end{aligned}$	$\begin{aligned} & 17884 / 2914\left(\mathrm{R}_{\text {int }}=\right. \\ & 0.0722) \end{aligned}$	$\begin{aligned} & 25719 / 2208\left(\mathrm{R}_{\mathrm{int}}=\right. \\ & 0.0419) \end{aligned}$
Goodness-of-fit on F2	1.084	0.995	0.632
Final R indices $[1>2 \sigma(I)]$	$\begin{aligned} & \text { R1 }=0.0527, \omega R 2 \\ & =0.1438 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0585, \omega R 2 \\ & =0.1269 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0482, \omega R 2 \\ & =0.1100 \end{aligned}$
R indices (all data)	$\begin{aligned} & \text { R1 = 0.0737, } \omega \text { R2 } \\ & =0.1679 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.1490, \omega \mathrm{R} 2 \\ & =0.1651 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0559, \omega \mathrm{R} 2 \\ & =0.1247 \end{aligned}$
Largest difference peak and hole (e \AA^{-} ${ }^{3}$)	0.132, -0.153	0.258, -0.216	0.243, -0.333

Figure S10 Fluorescence kinetics spectra of OCTB $(20 \mu \mathrm{M})$ in the absence (black line) and presence (red line) of antibiotic analyte ($260 \mu \mathrm{M}$) recorded up to 30 minutes

Calculation of limit of Detection ${ }^{2}$

The fluorescence response was recorded at low concentration of analytes. The plot of fluorescence intensity vs analyte concentration produces a liner fit curve. The slop of this graph used to determine the limit of detection (LOD) using the equation $3 \sigma / \mathrm{K}$, where σ refers to the standard deviation in the fluorescence intensity without addition of any analyte and K denotes the slop of the fluorescence intensity vs analyte concentration plot.

Figure S11 Fluorescence response of OCTB $(20 \mu \mathrm{M})$ in presence of tetracycline(left) and oxytetracycline (right) used for limit of detection calculation.

Figure S12 Bar diagram depicts the competitive quenching efficiency of the OCTB probe towards similar antibiotics, and other interfering/competing elements before (black bar) and after (red bar) the addition of (A) Tc and (B) OTc.

(e)

$$
\tau_{0} / \tau=K_{d}[Q]+1
$$

$$
\text { eq. } 1
$$

Comparing with the equation obtained from TRPL titration (Fig. c, d)

$$
\begin{aligned}
& y=0.00185 x+1 ; K_{d}=1.85 \times 10^{3} M^{-1} \text { for TC } \\
& y=0.00163 x+1 ; K_{d}=1.63 \times 10^{3} M^{-1} \text { for OTC }
\end{aligned}
$$

Figure S13 Change in the Time-resolved photoluminescence (TRPL) spectra of OCTB $(20 \mu \mathrm{M})$ with the addition of (a) Tc and (b) OTc. (c) and (d) represents a linear regression curve for the change in fluorescence lifetime against the variation of Tc and OTc concentration respectively. (e) demonstrates the equation and calculation for the dynamic quenching constant $\left(\mathrm{K}_{\mathrm{d}}\right)$

FRET Parameters:

All the parameters were calculated using the below equations.
(1) Overlap Integral $[J(\lambda)]=\int_{0}^{\infty} F_{D}(\lambda) \varepsilon_{A}(\lambda) \lambda^{4} d \lambda$
(2) Forster distance $\left(R_{0}\right)=0.211\left[(J) Q\left(\eta^{-4}\right)\left(k^{2}\right)\right]^{1 / 6}$

(3) RET Efficiency $(E \%)=1-\left(t_{D A} / t_{D}\right)$

Equation (1) J denotes overlap integral value, $\mathrm{F}_{\mathrm{D}}(\lambda)$ represents the corrected fluorescence intensity from λ to $\Delta \lambda$ with total fluorescence intensity for OCTB normalized to unity, and $\varepsilon_{A}(\lambda)$ represents molar absorptivity of acceptor (analyte) at λ in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$. Equation (2) R_{0} represents Förster distance, Q denotes the fluorescence quantum yield OCTB without any analyte, η represents refractive index of the medium, and k^{2} signifies dipole orientation factor of donor and acceptor which generally assumed to be equal to 0 . 667.Equation (3) E\% denotes RET efficiency where $t_{D A}$ and \mathbf{t}_{D} signifies the average fluorescence lifetime in presence and absence of analyte.
(a)

(c)

	Tc
$[J(\lambda)]=$	$1.58 \times 10^{13} \mathrm{M}^{-1} \mathrm{~cm}^{-1} \mathrm{~nm}^{4}$
$\left(R_{0}\right)$	$=17.98 \mathrm{~A}$
$(E \%)$	$=49.09 \%$

(b)

OTC

$1.37 \times 10^{13} \mathrm{M}^{-1} \mathrm{~cm}^{-1} \mathrm{~nm}^{4}$
17.54 A
41.34 \%

Figure S14 Indicates the spectral overlap between the absorbance of analyte and the emission of OCTB for (a) Tc and (b) OTc, respectively. (c) illustrates the FRET Parameters calculated from the above-mentioned equation for both the analytes.

Inner filter effect (IFE):

IFE has been calculate using the below equation ${ }^{3,4}$

$$
\frac{I_{\text {corr }}}{I_{\text {obs }}}=\frac{2.3 d A_{e x}}{1-10^{-d A_{e x}}} 10^{g A_{e m}} \frac{2.3 s A_{e m}}{1-10^{-s A_{e m}}} \ldots \text { eqn S2 }
$$

Here, $\mathrm{I}_{\text {obs }}, \mathrm{l}_{\text {obs }}$ signify the measured and IFE corrected maximum fluorescence intensity value; $A_{\text {ex }}$ and $A_{\text {em }}$ denotes the absorbance and emission maxima value at wavelength 330 nm and 426 nm respectively; s represents thickness of excitation beam $(0.10 \mathrm{~cm}), \mathrm{g}$ is the distance between the edge of the excitation beam and the edge of the cuvette $(0.40 \mathrm{~cm})$ and d is the width of the cuvette $(1.00 \mathrm{~cm})$.

Figure S15 The Observed and corrected quenching efficiencies (\%) for the quenching of OCTB with the addition of (b)Tc and (c) OTc.

Table S3 Calculations for IFE corrections for fluorescence quenching Of OCTB in presence of Tc

Concentration of Tc ($\mu \mathrm{M}$)	$\mathrm{A}_{\text {ex }}$	$\mathrm{A}_{\text {em }}$	$\mathrm{I}_{\text {obs }}$	$\mathrm{I}_{\text {corr }}$	$\mathrm{I}_{\text {corr }} / \mathrm{I}_{\text {obs }}$	$E_{\text {obs }}$	$\mathrm{E}_{\text {corr }}$
0	0.1633	0.0267	$2.33 \mathrm{E}+06$	$2.87 \mathrm{E}+06$	$1.23 \mathrm{E}+00$	0.00E+00	0.00E+00
20	0.378	0.0308	$1.76 \mathrm{E}+06$	$2.71 \mathrm{E}+06$	$1.54 \mathrm{E}+00$	$2.47 \mathrm{E}+01$	5.57E+00
40	0.5911	0.0372	$1.43 \mathrm{E}+06$	$2.72 \mathrm{E}+06$	$1.90 \mathrm{E}+00$	$3.86 \mathrm{E}+01$	5.23E+00
60	0.8154	0.0454	1.13E+06	$2.63 \mathrm{E}+06$	$2.32 \mathrm{E}+00$	$5.14 \mathrm{E}+01$	$8.45 \mathrm{E}+00$
80	1.0118	0.0523	890202.2	$2.42 \mathrm{E}+06$	$2.72 \mathrm{E}+00$	$6.18 \mathrm{E}+01$	$1.56 \mathrm{E}+01$
100	1.2133	0.0574	692561.2	$2.18 \mathrm{E}+06$	$3.15 \mathrm{E}+00$	7.03E+01	2.39E+01
120	1.3818	0.0614	543253.1	$1.92 \mathrm{E}+06$	$3.53 \mathrm{E}+00$	7.67E+01	$3.31 \mathrm{E}+01$
140	1.5243	0.0641	421264	$1.63 \mathrm{E}+06$	$3.86 \mathrm{E}+00$	$8.19 \mathrm{E}+01$	$4.33 \mathrm{E}+01$
160	1.6476	0.0668	327639.8	$1.36 \mathrm{E}+06$	4.15E+00	$8.59 \mathrm{E}+01$	$5.26 \mathrm{E}+01$
180	1.8315	0.0694	263673.3	$1.21 \mathrm{E}+06$	$4.59 \mathrm{E}+00$	8.87E+01	$5.78 \mathrm{E}+01$
200	1.8658	0.072	199607.8	$9.35 \mathrm{E}+05$	$4.68 \mathrm{E}+00$	$9.14 \mathrm{E}+01$	$6.74 \mathrm{E}+01$
220	1.8829	0.0746	158351.8	$7.50 \mathrm{E}+05$	$4.74 \mathrm{E}+00$	$9.32 \mathrm{E}+01$	$7.39 \mathrm{E}+01$
240	1.914	0.0768	123657.7	5.96E+05	4.82E+00	9.47E+01	7.92E+01
260	1.923	0.0784	97456.92	$4.73 \mathrm{E}+05$	$4.85 \mathrm{E}+00$	$9.58 \mathrm{E}+01$	$8.35 \mathrm{E}+01$

Table S4 Calculations for IFE corrections for fluorescence quenching of OCTB in presence of OTc

Concentration of OTc ($\mu \mathrm{M}$)	$\mathrm{A}_{\text {ex }}$	$\mathrm{A}_{\text {em }}$	$\mathrm{I}_{\text {obs }}$	$\mathrm{I}_{\text {corr }}$	$\mathrm{I}_{\text {corr }} / \mathrm{I}_{\text {obs }}$	$E_{\text {obs }}$	$\mathrm{E}_{\text {corr }}$
0	0.1735	0.0417	$2.35 \mathrm{E}+06$	$2.98 \mathrm{E}+06$	$1.26 \mathrm{E}+00$	0.00E+00	0.00E+00
20	0.393	0.044	1.74E+06	$2.76 \mathrm{E}+06$	$1.59 \mathrm{E}+00$	$2.63 \mathrm{E}+01$	7.39E+00
40	0.6247	0.0495	1.32E+06	$2.61 \mathrm{E}+06$	$1.98 \mathrm{E}+00$	$4.41 \mathrm{E}+01$	$1.23 \mathrm{E}+01$
60	0.8333	0.0517	1.04E+06	$2.46 \mathrm{E}+06$	$2.37 \mathrm{E}+00$	5.59E+01	$1.74 \mathrm{E}+01$
80	1.0432	0.0547	822743.3	$2.29 \mathrm{E}+06$	$2.79 \mathrm{E}+00$	$6.51 \mathrm{E}+01$	$2.29 \mathrm{E}+01$
100	1.2398	0.0565	658519.1	$2.11 \mathrm{E}+06$	$3.20 \mathrm{E}+00$	7.20E+01	$2.91 \mathrm{E}+01$
120	1.402	0.0586	533832.5	1.90E+06	3.56E+00	7.73E+01	$3.61 \mathrm{E}+01$
140	1.5382	0.0608	430659.3	1.67E+06	$3.88 \mathrm{E}+00$	8.17E+01	$4.39 \mathrm{E}+01$
160	1.6761	0.0627	342040.1	1.44E+06	$4.20 \mathrm{E}+00$	$8.55 \mathrm{E}+01$	$5.18 \mathrm{E}+01$
180	1.7564	0.0634	282089.4	$1.24 \mathrm{E}+06$	$4.39 \mathrm{E}+00$	$8.80 \mathrm{E}+01$	$5.84 \mathrm{E}+01$
200	1.8029	0.0667	231760.4	1.05E+06	4.51E+00	$9.02 \mathrm{E}+01$	6.49E+01
220	1.8424	0.0655	183807.6	$8.45 \mathrm{E}+05$	4.60E+00	$9.22 \mathrm{E}+01$	$7.16 \mathrm{E}+01$
240	1.9295	0.0672	150156.1	7.22E+05	4.81E+00	$9.36 \mathrm{E}+01$	$7.57 \mathrm{E}+01$
260	1.9575	0.0685	122191.3	5.96E+05	$4.88 \mathrm{E}+00$	$9.48 \mathrm{E}+01$	$8.00 \mathrm{E}+01$

Figure S16: DFT optimised HOMO-LUMO energy band profile to understand for the possibility of d-PET mechanism triggering the quenching phenomena.
${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and Mass Spectra

${ }^{1} \mathrm{H}$-NMR of OCTB

${ }^{13} \mathrm{C}$-NMR of OCTB

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CYB

${ }^{13}$ C-NMR of CYB

${ }^{1} \mathrm{H}$-NMR of OCTC

${ }^{13} \mathrm{C}$-NMR of OCTC

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of CYC

${ }^{13} \mathrm{C}$-NMR of CYC

Mass spectra of CYB

Mass spectra of OCTC

Mass spectra of CYC

Reference

1. R. Parui, N. Meher and P. K. Iyer, Mater. Adv., 2022, 3, 5980-5986.
2. N. Meher and P. K. Iyer, Angew. Chem., Int. Ed., 2018, 57, 8488-8492.
3. W. Zhai, C. Wang, P. Yu, Y. Wang and L. Mao, Anal. Chem., 2014, 86, 12206-12213.
4. M. Lin, H. Y. Zou, T. Yang, Z. X. Liu, H. Liu and C. Z. Huang, Nanoscale, 2016, 8, 2999-3007.
