Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Contrasted behaviors of methylthiolated perylene and pyrene as organic semiconductors: implications of molecular electronic structure and crystal structure

Kazuo Takimiya,^{a,b,c*}Kirill Bulgarevich,^a Shingo Horiuchi,^{a,b}

^aRIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

^bDepartment of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan

^cTohoku University Advanced Institute for Materials Research (AIMR), 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 Japan

1.	Optimized molecular structures of MT-perylene isomers	S2
2.	Characterization of MT-perylene	83
3.	Crystal structure and transfer integrals of MT-perylene	S 5

1. Optimized molecular structures of MT-perylene isomers

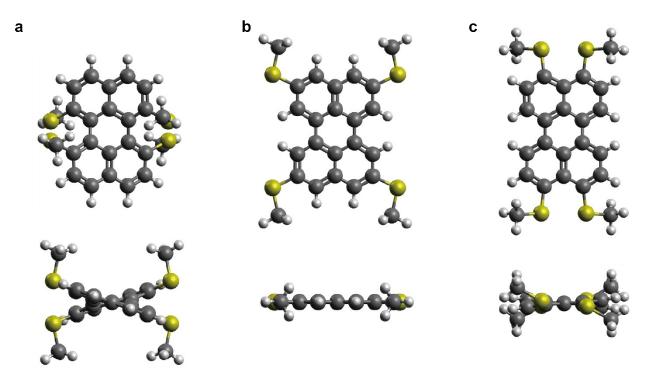


Fig. S1. Optimized molecular structures of (a) 1,6,7,12-, (b) 2,5,8,11-, and (c) 3,4,9,10-tetrakis(methylthio)perylenes. Note that only 2,5,8,11 isomer has a planar molecular structure.

2. Characterization of MT-perylene

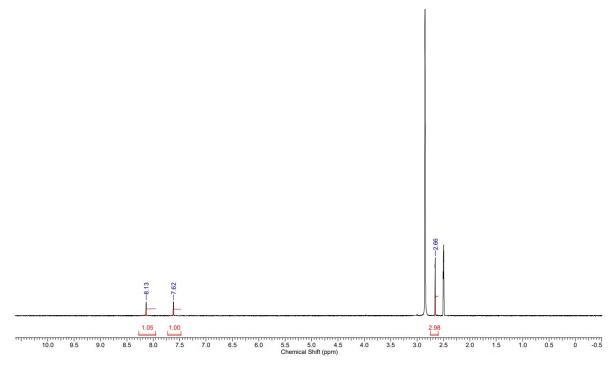


Fig. S2. ¹H NMR spectra of MT-perylene in DMSO-*d*₆ at 120°C.

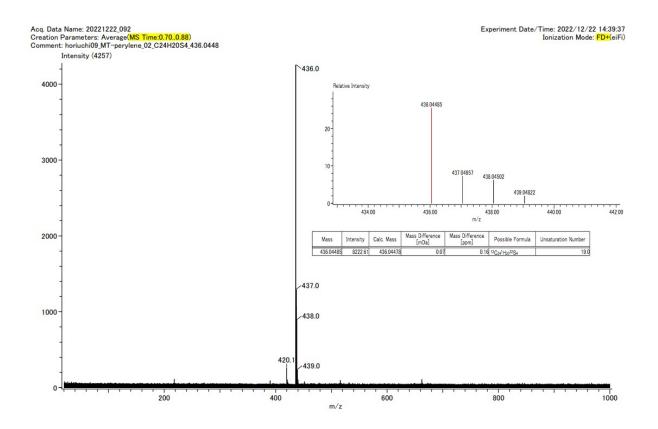


Fig. S3. HRMS spectra of MT-perylene.

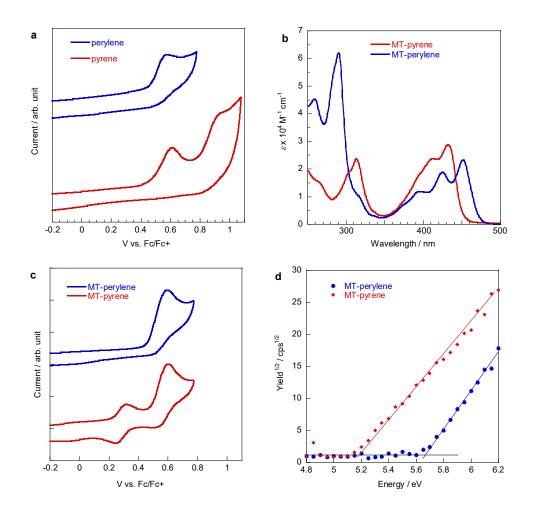


Fig. S4. Cyclic voltammograms of parent perylene and pyrene (a) and physicochemical properties of MT-perylene in comparison with those of MT-pyrene (b-d); (b) UV-vis absorption spectra in chloroform solution, (c) cyclic voltammetry measured in benzonitrile solution containing 0.1 M tetrabutylammonium hexafluorophosphate with the platinum working and counter electrodes, and Ag/AgCl electrode as the reference electrode (the potentials were calibrated against the standard Fc/Fc⁺ couple measured under the identical conditions), and (d) ionization potential evaluated by photoelectron spectroscopy in air. From the onset of the oxidation peaks, the $E_{\rm HOMO}$ of parent perylene and pyrene were estimated to be -5.24 and -5.26 eV, respectively.

Table S1. Summary of physicochemical properties of MT-perylene and MT-pyrene.

	<i>E</i> _{ox} (onset) / V ^a	$E_{ m HOMO}$ / eV ^b	λ_{onset} / nm	$E_{\rm g}$ / eV °	IP / eV
MT-perylene	0.45	-5.25 d	475	2.61	5.68
MT-pyrene	0.22	-5.02 d	452	2.73	5.20

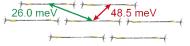
^a V vs. Fc/Fc⁺. b Estimated from the following equation: $E_{\text{HOMO}} = -4.80 - E_{\text{ox}}$. ^c Estimated from the absorption onset. ^d E_{HOMO} s of parent perylene and pyrene were estimated to be -5.24 and -5.26 eV, respectively.

3. Crystal structure and transfer integrals of MT-perylene

a MT-perylene

b MS-pyrene

Fig. S5. MS-pyrene's inclined brickwork structure (b) compared to that of MT-perylene (a).


27.5 meV

a MT-perylene brickwork

ḿe∖

a MT-perylene inclined brickwork

58.7 meV

3.0 meV

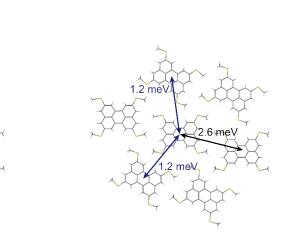


Fig. S6. Calculated transfer integrals of brickwork and inclined brickwork structure of MT-perylene.

Temperature / K	300	200	100
Formula	$C_{24}H_{20}S_4$	$C_{24}H_{20}S_4$	$C_{24}H_{20}S_4$
Molecular Weight	436.64	436.64	436.64
Crystal Habit	plate	plate	plate
Crystal System	triclinic	triclinic	triclinic
Space Group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
<i>a</i> /Å	4.8974(3)	4.8846(3)	4.8621(3)
b/Å	9.4432(5)	9.3854(5)	9.3471(5)
c /Å	11.1155(7)	11.0554(4)	11.0114(8)
lpha /°	89.740(5)	90.232(4)	90.500(5)
eta /°	79.373(5)	100.626(4)	100.650(5)
$\gamma/^{\circ}$	87.973(5)	91.646(4)	91.424(4)
$V/Å^3$	504.93(5)	497.90(4)	491.61(5)
Ζ	1	1	1
R	0.0472	0.0540	0.0620
$R_{ m w}$	0.1541	0.1565	0.1709
GOF	1.095	1.069	1.064

Table S2. Crystallographic data of MT-perylene brickwork structure.

Table S3. Crystallographic data of MT-perylene inclined brickwork structure.

Temperature / K	300	200	100
Formula	$C_{24}H_{20}S_4$	$C_{24}H_{20}S_4$	$C_{24}H_{20}S_4$
Molecular Weight	436.64	436.64	436.64
Crystal Habit	plate	plate	plate
Crystal System	monoclinic	monoclinic	monoclinic
Space Group	$P2_l/n$	$P2_1/n$	$P2_1/n$
<i>a</i> /Å	4.8598(2)	4.8514(2)	4.8336(2)
b/Å	22.1181(10)	22.0402(9)	21.9293(8)
c /Å	9.4583(4)	9.4012(3)	9.3596(3)
lpha /°	90	90	90
eta /°	92.098(4)	91.773(3)	91.596(3)
$\gamma / ^{\circ}$	90	90	90
$V/\text{\AA}^3$	1015.99(8)	1004.75(7)	991.71(6)
Ζ	2	2	2
R	0.0525	0.0792	0.0754
$R_{ m w}$	0.1615	0.2088	0.2270
GOF	1.107	1.143	1.090