Electronic Supplementary Information

Investigation of Enhanced Third-Order Optical Nonlinearity in Novel Coenzyme-A Capped Silver Nanoparticles

Aditya Dileep Kurdekar ${ }^{\# 1,2}$, Prajal Chettri ${ }^{\# 2}$, Rajasimha Kurnoothala ${ }^{2}$, Chelli Sai Manohar ${ }^{3}$, Shailesh Srivastava ${ }^{2}$, Krishna Chaitanya Vishnubhatla ${ }^{2}$

S1. Estimation of Lattice planes of silver nanoparticles based on TEM-SAED pattern

By using Image J software, we calculated the diameter of the 4 rings as followed in Table as Lengths. These values may vary depending on the taken set scale, but the ratios will come always same.

£ Results
File Edit Font Results

	Area	Mean	Min	Max	Angle	Length	-
1	135	74.186	0.802	255.000	-47.411	134.469	
2	157	72.232	0.000	254.944	-98.858	155.859	
3	222	76.548	0.000	238.790	-59.482	220.554	
4	259	80.780	0.000	255.000	-90.000	258.000	-
4							

From the figure it appears that the first two rings were closer followed by 3rd and 4th were closer indicating a FCC pattern.

For cubic crystals, $\mathrm{d}_{\mathrm{hkl}}=\mathrm{a}_{0} /\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right)^{1 / 2}$ where $\mathrm{d}_{\mathrm{hkl}}$ is the d spacing, a_{0} is the lattice constant, h, k \& 1 are the Miller indices.

Using the equivalence of D spacing and radium of rings,
$\mathrm{R}_{\mathrm{hkl}}=\left(\lambda \mathrm{L} / \mathrm{a}_{0}\right)\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right)^{1 / 2}$
As the value of $\left(\lambda \mathrm{L} / \mathrm{a}_{0}\right)$ is constant for a given diffraction pattern, the values of $\mathrm{R}_{\mathrm{hkl}}$ vary according to $\left(\mathrm{h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}\right)^{1 / 2}$.

By using the ratios:
$\mathrm{R}_{1} / \mathrm{R}_{2}=\mathrm{d}_{1} / \mathrm{d}_{2}=\left(\mathrm{h}_{1}{ }^{2}+\mathrm{k}_{1}{ }^{2}+\mathrm{l}_{1}{ }^{2}\right)^{1 / 2} /\left(\mathrm{h}_{2}{ }^{2}+\mathrm{k}_{2}{ }^{2}+\mathrm{l}_{2}{ }^{2}\right)^{1 / 2}=134.469 / 155.859=0.862$
$\mathrm{R}_{2} / \mathrm{R}_{3}=\mathrm{d}_{2} / \mathrm{d}_{3}=\left(\mathrm{h}_{2}{ }^{2}+\mathrm{k}_{2}{ }^{2}+\mathrm{l}_{2}{ }^{2}\right)^{1 / 2} /\left(\mathrm{h}_{3}{ }^{2}+\mathrm{k}_{3}{ }^{2}+\mathrm{l}_{3}{ }^{2}\right)^{1 / 2}=155.859 / 220.554=0.706$
$\mathrm{R}_{3} / \mathrm{R}_{4}=\mathrm{d}_{3} / \mathrm{d}_{4}=\left(\mathrm{h}_{3}{ }^{2}+\mathrm{k}_{3}{ }^{2}+\mathrm{l}_{3}{ }^{2}\right)^{1 / 2} /\left(\mathrm{h}_{4}{ }^{2}+\mathrm{k}_{4}{ }^{2}+\mathrm{l}_{4}{ }^{2}\right)^{1 / 2}=220.554 / 258.000=0.854$
However, the above obtained values are only possible if the planes are $\{111\},\{200\},\{220\}$, $\{311\}$ as
$\mathrm{R}_{1} / \mathrm{R}_{2}=0.862 \sim\left(1^{2}+1^{2}+1^{2}\right)^{1 / 2} /\left(2^{2}+0^{2}+0^{2}\right)^{1 / 2}=0.866$
$\mathrm{R}_{2} / \mathrm{R}_{3}=0.706 \sim\left(2^{2}+0^{2}+0^{2}\right)^{1 / 2} /\left(2^{2}+2^{2}+0^{2}\right)^{1 / 2}=0.707$
$\mathrm{R}_{3} / \mathrm{R}_{4}=0.854 \sim\left(2^{2}+2^{2}+0^{2}\right)^{1 / 2} /\left(3^{2}+1^{2}+1^{2}\right)^{1 / 2}=0.852$
Thus, we can conclude that allowed reflections are for an fcc crystal lattice. The order of rings in increasing radius are: $\{111\},\{200\},\{220\},\{311\},\{222\},\{400\},\{331\},\{420\},\{422\} \ldots$

Table S1- Third-order non-linear susceptibility $\chi^{(3)}$ of various nanoparticle systems reported in the literature

S.No	Material	Reference	$\chi^{(3)}$ material	$\chi^{(3)}$ standard	Reference
1	AgNPs- CoA in water	CS_{2}	1.38×10^{-13}	$1.75 \mathrm{X} \mathrm{10} 0^{-12}$	Present work
2	AgNPs in water	CS_{2}	2.95×10^{-14}	-	(45)
3	Ag colloids in acetone	CCL_{4}	1.89×10^{-14}	4.40×10^{-14}	(52)
4	Ag colloids in DCM	CCL_{4}	3.6×10^{-12}	4.40×10^{-14}	(52)
5	Ag colloids in chloroform	CCL_{4}	5.3×10^{-13}	4.40×10^{-14}	(52)
6	AgNPs in water	CS_{2}	7.7×10^{-14}	9.32×10^{-12}	(53)
7	AuNPs in water	CS_{2}	5.52×10^{-13}	9.32×10^{-12}	(53)
8	AuNPs in water	CCL_{4}	1.93×10^{-14}	4.40×10^{-14}	(54)

