Electronic Supplementary Information

Investigation of Enhanced Third-Order Optical Nonlinearity in Novel Coenzyme-A Capped Silver Nanoparticles

Aditya Dileep Kurdekar^{#1,2}, Prajal Chettri^{#2}, Rajasimha Kurnoothala², Chelli Sai Manohar³, Shailesh Srivastava², Krishna Chaitanya Vishnubhatla²

S1. Estimation of Lattice planes of silver nanoparticles based on TEM-SAED pattern

By using Image J software, we calculated the diameter of the 4 rings as followed in Table as Lengths. These values may vary depending on the taken set scale, but the ratios will come always same.

From the figure it appears that the first two rings were closer followed by 3rd and 4th were closer indicating a FCC pattern.

For cubic crystals, $d_{hkl} = a_0/(h^2+k^2+l^2)^{1/2}$ where d_{hkl} is the d spacing, a_0 is the lattice constant, h,k & l are the Miller indices.

Using the equivalence of D spacing and radium of rings,

 $R_{hkl} = (\lambda L/a_0)(h^2 + k^2 + l^2)^{1/2}$

As the value of $(\lambda L/a_0)$ is constant for a given diffraction pattern, the values of R_{hkl} vary according to $(h^2+k^2+l^2)^{1/2}$.

By using the ratios:

$$\begin{split} R_1/R_2 &= d_1/d_2 = (h_1^2 + k_1^2 + l_1^2)^{1/2} / (h_2^2 + k_2^2 + l_2^2)^{1/2} = 134.469/155.859 = 0.862 \\ R_2/R_3 &= d_2/d_3 = (h_2^2 + k_2^2 + l_2^2)^{1/2} / (h_3^2 + k_3^2 + l_3^2)^{1/2} = 155.859/220.554 = 0.706 \\ R_3/R_4 &= d_3/d_4 = (h_3^2 + k_3^2 + l_3^2)^{1/2} / (h_4^2 + k_4^2 + l_4^2)^{1/2} = 220.554/258.000 = 0.854 \end{split}$$

However, the above obtained values are only possible if the planes are {111}, {200}, {220}, {311} as

$$R_1/R_2 = 0.862 \sim (1^2 + 1^2 + 1^2)^{1/2} / (2^2 + 0^2 + 0^2)^{1/2} = 0.866$$

$$R_2/R_3 = 0.706 \sim (2^2 + 0^2 + 0^2)^{1/2} / (2^2 + 2^2 + 0^2)^{1/2} = 0.707$$

$$R_3/R_4 = 0.854 \sim (2^2 \! + \! 2^2 \! + \! 0^2)^{1/2} \, / (3^2 \! + \! 1^2 \! + \! 1^2)^{1/2} = 0.852$$

Thus, we can conclude that allowed reflections are for an fcc crystal lattice. The order of rings in increasing radius are: {111}, {200}, {220}, {311}, {222}, {400}, {331}, {420}, {422} ...

Table S1	- Third-order	non-linear	susceptibility	χ ⁽³⁾	of	various	nanoparticle	systems
reported i	in the literatur	·e						

S.No	Material	Reference	$\chi^{(3)}$ material	$\chi^{(3)}$ standard	Reference
1	AgNPs- CoA	CS ₂	1.38 X 10 ⁻¹³	1.75 X 10 ⁻¹²	Present work
	in water				
2	AgNPs in	CS_2	2.95 X 10 ⁻¹⁴	-	(45)
	water				
3	Ag colloids in	CCL ₄	1.89×10 ⁻¹⁴	4.40 ×10 ⁻¹⁴	(52)
	acetone				
4	Ag colloids in	CCL ₄	3.6×10 ⁻¹²	4.40×10 ⁻¹⁴	(52)
	DCM				
5	Ag colloids in	CCL ₄	5.3×10-13	4.40 ×10 ⁻¹⁴	(52)
	chloroform				
6	AgNPs in	CS ₂	7.7×10^{-14}	9.32 ×10 ⁻¹²	(53)
	water				
7	AuNPs in	CS ₂	5.52×10^{-13}	9.32 ×10 ⁻¹²	(53)
	water				
8	AuNPs in	CCL ₄	1.93×10-14	4.40×10-14	(54)
	water				