Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Carbazole-benzonitrile derivatives as universal hosts for triplet-harvesting blue organic light-emitting diodes

Sook Hee Jeong, Seung Chan Kim, Jun Yeob Lee*

School of Chemical Engineering, Sungkyunkwan University 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Korea

* Corresponding author E-mail : leej17@skku.edu

Experimental

General information

All materials used for the experiments were commercially available, and all reagents, except 9H-carbazole, were used for synthesis without further purification. 9H-carbazole was purified through toluene recrystallization. The 9H-carbazole and boron tribromide, sodium tertbutoxide were purchased from Sigma-Aldrich. 1-Bromo-3-methoxybenzene, 1-bromo-4methoxybenzene, and 2-bromo-1,3-difluorobenzene, bis(diphenylphosphino)ferrocene[1,1'-], were purchased from TCI. Copper(I) cyanide was purchased from Alfa Aesar. Tris(dibenzylideneacetone)dipalladium(0) was a product of J&H Chem. Tri-tertbutylphosphine was purchased from P&H Tech. Potassium carbonate (K₂CO₃) was purchased from Daejung Chemical & Metal Co. Toluene, tetrahydrofuran (THF), n-hexane (HEX), dichloromethane (MC), N-methyl-2-pyrrolidone (NMP) and 1,4-dioxane were purchased from Duksan Chemical Industry Co.. All purifications were carried out through column chromatography and vacuum sublimation. The column chromatography was performed using a mixture of MC and HEX on a silica gel column. Vacuum sublimation was conducted prior to device testing. Mass spectra of all materials were obtained using an Advion ExpressionL CMS spectrometer in APCI/FAB mode for mass spectrometry (MS). After purification, ¹H and ¹³C nuclear magnetic resonance (NMR) analysis was carried out using a Unity Inova (Varian, 500 MHz) spectrometer to identify the materials in deuterochloroform (CDCl₃). The properties of all materials were measured using cyclic voltammetry (CV) (Ivium Tech, Iviumstat) to calculate the HOMO and LUMO levels. Carbon electrode, Ag/AgCl electrode, and Pt electrode were used as the electrodes. Ferrocene and 0.1M tetrabutylammonium perchlorate in acetonitrile (ACN) were used as the reference material and electrolyte, respectively. UV-vis spectra were recorded using a UV-vis spectrophotometer (JASCO, V-730), and PL spectra were observed using a fluorescence spectrophotometer (PerkinElmer, LS-55). Both UV-vis spectra and PL spectra measurements were conducted using solution samples. When measuring the triplet energy of the materials, the analysis was performed at 77 K under a liquid nitrogen state. The photoluminescence quantum yield (PLQY) was measured using the Quantaurus-QY system (Hamamatsu, C11347-11). Density functional computations were performed using the Gaussian 09 program with the B3LYP/6-31G* basis set. The vacuum evaporation process was utilized under a pressure of 3.0×10^{-7} Torr for the fabrication of the devices. The devices were equipped with a glass lid filled with nitrogen and stored in a glove box to protect them from oxygen. All device performances were measured outside the glove box. The characterization of the devices was conducted using a Keithley 2400 source meter, and optical characterization was performed using a CS 2000 spectroradiometer.

Synthesis

Synthesis of 9-(3-methoxyphenyl)-9H-carbazole (1)

1-bromo-3-methoxybenzene (10.0 g, 53.46 mmol), 9H-carbazole (10.72 g, 64.15 mmol), tritert-butylphosphine (2.70 g, 13.36 mmol), sodium tert-butoxide (20.55 g, 213.84 mmol), tris(dibenzylideneacetone)dipalladium(0) (2.44 g, 2.67 mmol), and 100 mL of toluene were added to a 250 mL round-bottom flask. The reaction mixture was refluxed overnight under nitrogen conditions. After the completion of the reaction, the mixture was cooled to room temperature. It was then filtered using a celite/silica filter and concentrated using a rotary evaporator. For further purification, silica gel column chromatography was performed using nhexane as the eluent (11 g, Yield = 75%).

MS (APCI) m/z: Found 274.67 [M + H]+. Calculated For C₁₉H₁₅NO: 273.12.

Synthesis of 3-(9H-carbazol-9-yl)phenol (2)

A solution of 9-(3-methoxyphenyl)-9H-carbazole (11 g, 40.24 mmol) dissolved in MC (200 mL) was stirred in a two-necked flask under a nitrogen atmosphere for 30 minutes to cool to - 78 °C using dry ice. After cooling, BBr₃ (20 g, 80.48 mmol) was slowly injected under a nitrogen condition and stirred at -78 °C for 1 hour under a nitrogen atmosphere. After 1 hour, the reaction mixture gradually warmed up to room temperature with continuous stirring. After overnight, the mixture was then extracted with MC and distilled water. The extracted product was evaporated using a rotary evaporator. Silica gel column chromatography was performed using MC:HEX (1:4) as the solvent for purification. The final product was obtained (8.2 g, Yield = 78%).

MS (APCI) m/z: Found 260.32 [M + H]+. Calculated For $C_{18}H_{13}NO$: 259.10.

Synthesis of 9,9'-(((2-bromo-1,3-phenylene)bis(oxy))bis(3,1-phenylene))bis(9H-carbazole)

3-(9H-carbazol-9-yl)phenol (8.2 g, 31.62 mmol), 2-bromo-1,3-difluorobenzene (3.05 g, 15.81 mmol), potassium carbonate (6.55 g, 47.43 mmol) and 30 mL of NMP were added into a 100 mL two-necked flask. The reaction mixture was stirred and heated at 180 °C for 10 h. After completion, the reaction mixture was cooled to room temperature. The mixture was then extracted with MC and distilled water. The extracted product was evaporated using a rotary evaporator. Silica gel column chromatography was performed using MC:HEX (1:4) as the solvent for purification. The final product was obtained (8.58 g, Yield = 80%).

MS (APCI) m/z : Found 670.98 [M + H]+. Calculated For $C_{42}H_{27}BrN_2O_2$: 670.13.

Synthesis of 2,6-bis(3-(9H-carbazol-9-yl)phenoxy)benzonitrile (3-CzPB)

A solution of 9,9'-(((2-bromo-1,3-phenylene))bis(0xy))bis(3,1-phenylene))bis(9H-carbazole) (2 2.97 mmol), copper(I) cyanide (1.06)11.91 mmol), g, g, tris(dibenzylideneacetone)dipalladium(0) (0.175)0.19 mmol), g, and bis(diphenylphosphino)ferrocene[1,1'-] (0.264 g, 0.47 mmol) in 1,4-dioxane (15 mL) were refluxed in a two-necked flask overnight at 200 °C with stirring under a nitrogen atmosphere. The reaction mixture was extracted with MC and distilled water. The extracted product was evaporated and then purified through silica gel column chromatography using MC:HEX (1:1) as the eluent. A white powdery product was obtained (0.85 g, Yield = 46%).

MS (APCI) m/z: Found 618.56 [M + H]+. Calculated For C₄₃H₂₇N₃O₂: 617.21.

¹H NMR (CDCl₃, 500 MHz, δ/ppm): δ 8.13 (d, J = 7.8 Hz, 4H), 7.64 (t, J = 8.1 Hz, 2H), 7.49 - 7.45 (m, 6H), 7.44 - 7.39 (m, 5H), 7.35 (t, J = 1.8 Hz, 2H), 7.29 (t, J = 7.3 Hz, 4H), 7.23 (dd, J = 8.3, 2.3 Hz, 2H), 6.72 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 500 MHz): 161.07, 154.02, 140.99, 134.79, 134.65, 129.04, 126.16, 123.51,
121.54, 120.50, 120.23, 112.82, 111.22, 109.68, 96.47.

Synthesis of 9-(4-methoxyphenyl)-9H-carbazole (4)

1-bromo-4-methoxybenzene (10.0 g, 53.46 mmol), 9H-carbazole (10.72 g, 64.15 mmol), tritert-butylphosphine (2.70 g, 13.36 mmol), sodium tert-butoxide (20.55 g, 213.84 mmol), tris(dibenzylideneacetone)dipalladium(0) (2.44 g, 2.67 mmol), and 100 mL of toluene were added to a 250 mL round-bottom flask. The reaction mixture was refluxed overnight under nitrogen conditions. After the completion of the reaction, the mixture was cooled to room temperature. It was then filtered using a celite/silica filter and concentrated using a rotary evaporator. For further purification, silica gel column chromatography was performed using nhexane as the eluent (13 g, Yield = 89%).

MS (APCI) m/z: Found 274.67 [M + H]+. Calculated For $C_{19}H_{15}NO$: 273.12.

Synthesis of 4-(9H-carbazol-9-yl)phenol (5)

A solution of 9-(4-methoxyphenyl)-9H-carbazole (13 g, 47.56 mmol) dissolved in MC (200 mL) was stirred in a two-necked flask under a nitrogen atmosphere for 30 minutes to cool to - 78 °C using dry ice. After cooling, BBr₃ (23.8 g, 95.12 mmol) was slowly injected under a nitrogen condition and stirred at -78 °C for 1 hour under a nitrogen atmosphere. After 1 hour, the resulting mixture was stirred overnight at room temperature. After overnight, the mixture was then extracted with MC and distilled water. The extracted product was evaporated using a rotary evaporator. Silica gel column chromatography was performed using MC:HEX (1:4) as the solvent for purification. The final product was obtained (9.3 g, Yield = 75%).

MS (APCI) m/z: Found 260.32 [M + H]+. Calculated For $C_{18}H_{13}NO$: 259.10.

Synthesis of 9,9'-(((2-bromo-1,3-phenylene)bis(oxy))bis(4,1-phenylene))bis(9H-carbazole)

4-(9H-carbazol-9-yl)phenol (4 g, 15.42 mmol), 2-bromo-1,3-difluorobenzene (0.86 g, 7.71 mmol), potassium carbonate (3.2 g, 23.13 mmol) and 20 mL of NMP were added into a 100 mL two-necked flask. The reaction mixture was stirred and heated at 180 °C for 10 h. After completion, the reaction mixture was cooled to room temperature. The mixture was then extracted with MC and distilled water. The extracted product was evaporated using a rotary evaporator. Silica gel column chromatography was performed using MC:HEX (1:4) as the solvent for purification. The final product was obtained (1.19 g, Yield = 40%). MS (APCI) m/z : Found 670.98 [M + H]+. Calculated For C₄₂H₂₇BrN₂O₂ : 670.13.

Synthesis of 2,6-bis(4-(9H-carbazol-9-yl)phenoxy)benzonitrile (4-CzPB)

A solution of 9,9'-(((2-bromo-1,3-phenylene))bis(0xy))bis(4,1-phenylene))bis(9H-carbazole) 2.97 (2 cyanide (1.06)11.91 g, mmol), copper(I) g, mmol), tris(dibenzylideneacetone)dipalladium(0) (0.175)0.19 mmol), and g, bis(diphenylphosphino)ferrocene[1,1'-] (0.264 g, 0.47 mmol) in 1,4-dioxane (15 mL) were refluxed in a two-necked flask overnight at 200 °C with stirring under a nitrogen atmosphere. The reaction mixture was extracted with MC and distilled water. The extracted product was evaporated and then purified through silica gel column chromatography using MC:HEX (1:1) as the eluent. A white powdery product was obtained (1.05 g, Yield = 57%).

MS (APCI) m/z: Found 618.56 [M + H]+. Calculated For $C_{43}H_{27}N_3O_2$: 617.21.

¹H NMR (CDCl₃, 500 MHz, δ/ppm): δ 8.16 (d, J = 7.7 Hz, 4H), 7.71 – 7.57 (m, 4H), 7.52 – 7.37 (m, 13H), 7.31 (td, J = 7.1, 0.9 Hz, 4H), 6.78 (d, J = 8.4 Hz, 2H).

¹³C NMR (CDCl₃, 500 MHz) : 160.83, 156.27, 140.57, 139.60,

Device preparation and measurements

To characterize the charge transport characteristics, hole-only devices (HODs) and electrononly devices (EODs) were fabricated. In the HODs, N1,N1'-(Biphenyl-4,4'-diyl)bis(N1phenyl-N4,N4 -di-m-tolylbenzene-1,4-diamine (DNTPD) was used to block electron injection. In the EODs, 2,8-bis(4,6-diphenyl-1,3,5-triazin-2-yl)dibenzo[b,d]furan (DBFTrz) was used to block hole injection. The device configurations for the HODs are as follows: ITO/PEDOT:PSS (60 nm)/3-CzPB or 4-CzPB (50 nm)/DNTPD (10 nm)/Al (200 nm). The device configuration for the EODs is as follows: ITO/PEDOT:PSS (60 nm)/DBFTrz (10 nm)/3-CzPB or 4-CzPB (50 nm)/LiF (1.5 nm)/Al (200 nm). The OLED devices were fabricated using a 50 nm thick indium tin oxide (ITO) anode on a transparent glass substrate. The materials used in the blue phosphorescent OLED devices follows: poly(3,4were as ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) worked as the hole injection layer, TAPC, 4,4',4"-Tris(carbazol-9-yl)triphenylamine (TCTA), which acted as the hole transport layer; 1,3-di(9H-carbazol-9-yl)benzene (mCP) and diphenyl(4-(triphenylsilyl)phosphine oxide (TSPO1) served as the carrier and exciton blocking layer, 1,3,5-tris(1-phenyl-1H-benzo[d]imidazole-2-yl)benzene (TPBi) acted as the electron transport layer, and LiF/Al, which served as the electron injection layer and cathode.

The device structure of blue PhOLEDs was indium tin oxide (ITO, 50 nm)/PEDOT : PSS (40 nm)/TAPC (40 nm)/mCP (10 nm)/EML (25 nm)/TSPO1 (5 nm)/TPBi (10 nm)/LiF(1.5 nm)/Al(200 nm). The EMLs were 3-CzPB:CN-Im, 4-CzPB:CN-Im, 3-CzPB:Ir(cb)₃ and 4-CzPB:Ir(cb)₃. The CN-Im was doped in each EML at a concentration of 15 wt% and that of Ir(cb)₃ was 20 wt%. The device structure of blue TADF OLEDs was indium tin oxide (ITO, 50 nm)/PEDOT : PSS (40 nm)/TAPC (5 nm)/mCP (10 nm)/EML (25 nm)/TSPO1 (25 nm)/LiF(1.5 nm)/Al(200 nm). The EMLs were 3-CzPB:p4TCzPhBN and 4-CzPB:p4TCzPhBN. The p4TCzPhBN was doped in each EML at a concentration of 20 wt%.

The device structure of blue MR TADF OLEDs was indium tin oxide (ITO, 50 nm)/PEDOT : PSS (40 nm)/TAPC (10 nm)/TCTA (5 nm)/mCP (5 nm)/EML (25 nm)/TSPO1 (25 nm)/LiF(1.5 nm)/Al(200 nm). The EMLs were 3-CzPB:t-DABNA and 4-CzPB:t-DABNA. The t-DABNA was doped in each EML at a concentration of 1, 3, 5 wt%.

List of tables

Table S1. Summarized Device performances of the 3-CzPB and 4-CzPB hosted blueMR TADF OLEDs according to doping concentration of t-DABNA.

Supporting Figures

Figure S1. The thermal decomposition temperature test curves of (a) 3-CzPB, (b) 4-C zPB.

Figure S2. The glass transition temperature test curves of (a) 3-CzPB, (b) 4-CzPB.

Figure S3. CV curves for the oxidation of (a) 3-CzPB, (b) 4-CzPB.

Figure S4. (a) Device structure and energy level diagram of Device 1, 2, 3 and 4 and (b) molecular structures used in blue PhOLEDs.

Figure S5. Device structure and energy level diagram of Device 5, 6 and molecular structure of blue TADF emitter.

Figure S6. (a) The HOMO and LUMO levels diagram and (b) chemical structures of materials used in the device.

Figure S7. The device data of 3-CzPB, 4-CzPB; (a) Current density–voltage–luminance curves, (b) Quantum efficiency–luminance curves, (c) Electroluminescence (EL) spectra of the blue MR TADF OLEDs 1, 3, 5 wt % doped with t-DABNA emitter at an initial luminance of 100 cd m⁻².

Figure S8. (a) ¹H NMR and (b) ¹³C NMR Spectrum of 3-CzPB.

Figure S9. (a) ¹H NMR and (b) ¹³C NMR Spectrum of 4-CzPB.

Figure S10. The repeated (10 cycle) CV data of the 3-CzPB(a) and 4-CzPB(b).

Figure S11. Changes in the PLQY of neat films of 3-CzPB and 4-CzPB in response to varying durations of UV irradiation.

Figure S12. Luminance-lifetime curve of the 3-CzPB and 4-CzPB hosted OLEDs; (a)

PhOLEDs 15 wt% doped with CN-Im emitter at an initial luminance of 1000 cd m⁻², (b) PhOLEDs 20 wt% doped with $Ir(cb)_3$ emitter at an initial luminance of 1000 cd m⁻², (c) TADF OLEDs 20 wt % doped with p4tCzPhBN emitter at an initial luminance of 10 00 cd m⁻², (d) MR TADF OLEDs 3 wt % doped with t-DABNA emitter at an initial luminance of 100 cd m⁻².

Figure S1. The thermal decomposition temperature test curves of (a) 3-CzPB, (b) 4-C zPB.

Figure S2. The glass transition temperature test curves of (a) 3-CzPB, (b) 4-CzPB.

Figure S3. The oxidation curves of (a) 3-CzPB and (b) 4-CzPB obtained from cyclic voltammetry scanning.

Figure S4. (a) Device structure and energy level diagram of Device 1, 2, 3 and 4 and (b) molecular structures used in blue PhOLEDs.

Figure S5. Device structure and energy level diagram of device 5 and 6, and molecular structure of blue TADF emitter.

Figure S6. (a) The HOMO and LUMO levels diagram and (b) chemical structures of materials used in the device.

Device structure: PEDOT:PSS(40)/TAPC(10)/TCTA(5)/mCP(5)/X:t-DABNA(25:Y%)/TSP

O1(25)/LiF(1.5)/Al(200)

X = 3-CzPB, 4-CZPB

Y = 1, 3, 5 wt%

Figure S7. The device data of 3-CzPB and 4-CzPB; (a), (b) Current density–voltage– luminance curves, (c), (d) Quantum efficiency–luminance curves, (e), (f) Electroluminescence (EL) spectra of the blue MR TADF OLEDs 1, 3, 5 wt % doped with t-DABNA emitter at an initial luminance of 100 cd m⁻².

Device ^[a]	V _d ^[b] (V)	EQE ^[c] (%)		PE ^[d] (lm W ⁻¹)		CE ^[e] (cd/A ⁻¹)		CIE
		100 cd m -2	Max	100 cd m -2	Max	100 cd m -2	Max	coordinate
3-CzPB_1 %	4.5	15.4	31.1	8.8	24.4	11.9	24.9	(0.13, 0.09)
3-CzPB_3 %	4.5	13.3	30.1	8.0	25.6	11.4	26.3	(0.13, 0.10)
3-CzPB_5 %	4.6	12.2	30.3	7.5	25.4	11.0	27.5	(0.12, 0.11)
4-CzPB_1 %	6.1	8.0	19.2	3.5	14.7	6.5	15.9	(0.13, 0.09)
4-CzPB_3 %	6.1	8.4	20.9	3.8	17.1	7.5	18.8	(0.13, 0.10)
4-CzPB_5 %	6.0	7.2	19.5	3.5	17.3	6.6	18.1	(0.12, 0.11)

Table S1. Summarized Device performances of the 3-CzPB and 4-CzPB hosted blue MR TADF OLEDs according to doping concentration of t-DABNA.

[a] MR TADF OLED with t-DABNA as emitter, [b] Driving voltage at 100 cd/m², [c] External

quantum efficiency, [d] Power efficiency, [e] Current efficiency.

Figure S8. (a) ¹H NMR and (b) ¹³C NMR Spectrum of 3-CzPB.

(a)

Figure S9. (a) ¹H NMR and (b) ¹³C NMR Spectrum of 4-CzPB.

Figure S10. The repeated (10 cycle) CV data of the 3-CzPB(a) and 4-CzPB(b).

•

Figure S11. Changes in the PLQY of neat films of 3-CzPB and 4-CzPB according to UV irradiation time.

Figure S12. Luminance-lifetime curve of the 3-CzPB and 4-CzPB hosted OLEDs; (a) PhOLEDs doped with CN-Im emitter at an initial luminance of 1000 cd m⁻², (b) PhOLEDs doped with $Ir(cb)_3$ emitter at an initial luminance of 1000 cd m⁻², (c) TADF OLEDs do ped with p4tCzPhBN emitter at an initial luminance of 1000 cd m⁻², (d) MR TADF OLEDs doped with t-DABNA emitter at an initial luminance of 100 cd m⁻².