Supporting Information

Highly Emissive Sb³⁺-doped Rb₂InCl₅·H₂O perovskites: Cost-effective Synthesis, Luminescence, and its Application

Fan Chen,^a Xiao-Jun Wang,^{a,*} Wenhao Bai,^b Xuehu Zhang,^b Wen Hao,^b

Changhua Zhang,^a Tongtong Xuan^{b,*}

^aJiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and

Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, P. R. China

^bFujian Key Laboratory of Surface and Interface Engineering for High Performance Materials,

College of Materials, Xiamen University, Xiamen 361005, Fujian, P. R. China

*Corresponding authors.

E-mail addresses: wang.xiaojun@jsnu.edu.cn (X.-J.W.), ttxuan@xmu.edu.cn (T. X)

xSb ³⁺ :Rb ₂ InCl ₅ ·H ₂ O	Cell parameters (Å)			Coll volume (Å 3)
	а	b	с	Cell voluille (A ⁺)
0%	14.1861	9.8878	7.3153	1026.11
5%	14.1911	9.9128	7.3065	1027.83
10%	14.1801	9.9198	7.3105	1028.32
20%	14.1769	9.9208	7.3150	1028.83
30%	14.1879	9.9211	7.3071	1028.54
40%	14.2049	9.9079	7.3144	1029.43
50%	14.2178	9.8790	7.3383	1030.72
60%	14.2212	9.8891	7.3361	1031.71

Table S1 Main parameters of the xSb^{3+} : Rb_2InCl_5 · H_2O perovskites.

Compounds	Doping Ions	Emission Peak	PLQYs	Experimental Method	Reference
Cs ₂ NaInCl ₆	Mn ²⁺	610 nm	16%	Hydrothermal	54
	Mn ²⁺	610 nm	5%	Method	65
Cs ₂ AgInCl ₆	Mn ²⁺	632 nm	3-5%	Precipitation Method	58
	Mn ²⁺	620 nm	16%	Hot-injection Method	61
Cs2NaBiCl6	Mn ²⁺	590 nm	15%	Solution Method	27
	Ag^+	613 nm	20%		
	Mn ²⁺	585 nm	3.9%	Hot-injection Method	64
	Eu ³⁺	591 nm, 615 nm	3.3%		
Cs ₂ NaIn _x Bi _{1-x} Cl ₆	Mn ²⁺	614 nm	44.6%	Hot-injection Method	55
Cs ₄ CdBi ₂ Cl ₁₂	Mn ²⁺	605 nm	56.6	Hydrothermal Method	56
Cs ₂ AgBiCl ₆	In ³⁺	570 nm	36.6%	Anti-solvent recrystallization	63
	Na ⁺	610 nm	45%	Hydrothermal Method	59
CsMnBr ₃	-	643 nm	54%	Hot-injection Method	53
Cs ₂ InBr ₅ ·H ₂ O	Sb ³⁺	695 nm	35.6%	Hydrothermal Method	42
Cs ₂ SnCl ₆	Sb ³⁺	615 nm	8.45%	Hot-injection Method	57
	Sb ³⁺	602 nm	37%	Hydrothermal Method	60
Cs ₂ SnI ₆	-	620 nm	0.48%	Hot-injection Method	62

Table S2 Summary of the important parameters of red-emission lead-free perovskites.

$xSb^{3+}:Rb_2InCl_5\cdot H_2O$	CIE x	CIE y
5%	0.4817	0.4468
10%	0.4971	0.4346
20%	0.5100	0.4405
30%	0.4866	0.4428
40%	0.4941	0.4434
50%	0.4869	0.4441
60%	0.4878	0.4440

Table S3 The detailed CIE coordinate of the xSb³⁺:Rb₂InCl₅·H₂O perovskites.

Figure S1. Schematic illustration showing the preparation procedure of Sb³⁺:Rb₂InCl₅·H₂O

powders.

Figure S2. XRD patterns of Rb₂InCl₅·H₂O samples and PDF #78-1821 from ICSD.

Figure S3. FTIR spectra of Rb₂InCl₅·H₂O and Sb³⁺:Rb₂InCl₅·H₂O.

The broad absorption peak from 3000 to 3600 cm⁻¹ is ascribed to the H-O stretching vibration (v_{H-O}), and the narrow absorption peak in the range of 1500 - 1600 cm⁻¹ is attributed to the H-O bending vibration (δ_{H-O}). The result confirms that the

presence of the coordinating water in $Rb_2InCl_5 \cdot H_2O$ and $Rb_2InCl_5 \cdot H_2O:Sb^{3+}$, also consistent with the previous report.^{1, 2}

Figure S4. EDS spectrum of 40%Sb³⁺:Rb₂InCl₅·H₂O powders, showing the elements of Rb,

In, Cl, and Sb in the powders.

Figure S5. CIE coordinate of xSb^{3+} : $Rb_2InCl_5 \cdot H_2O(x = 5\% - 60\%)$.

Figure S6. TGA curve of 40%Sb³⁺:Rb₂InCl₅·H₂O.

Figure S7. Comparison of the XRD patterns of 40%Sb³⁺:Rb₂InCl₅·H₂O fresh sample and 40%Sb³⁺:Rb₂InCl₅·H₂O as synthesized after six months.

Figure S8. Normalized PL spectra of 40%Sb³⁺:Rb₂InCl₅·H₂O fresh sample and 40%Sb³⁺:Rb₂InCl₅·H₂O as synthesized after six months.

Reference

L. Zhou, J.F. Liao, Z.G. Huang, J.H. Wei, X.D. Wang, W.G. Li, H.Y. Chen, D.B. Kuang, C.Y. Su, A Highly Red-Emissive Lead-Free Indium-Based Perovskite Single Crystal for Sensitive Water Detection, *Angew. Chem. Inter.* Ed. **2019**, 58, 5277-5281.
J.-H. Wei, J.-B. Luo, J.-F. Liao, W.-T. Ou, D.-B. Kuang, Te⁴⁺-doped Cs₂InCl₅·H₂O single crystals for remote optical thermometry, Sci. *China Mater.* **2021**, 65, 764-772.