Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Zero-bias Bi-based perovskite image sensor arrays with direct laser-

scribing process

Yaqian Yang,^a Ying Li,^{*b} Di Chen,^{a,b} and Guozhen Shen^{*b}

^aSchool of Mathematics and Physics, University of Science and Technology Beijing,

Beijing 100083, China ^bSchool of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China E-mail: liying0326@bit.edu.cn, gzshen@bit.edu.cn

Figure S1. Top-view SEM image of $Cs_3Bi_2Br_9$ with annealing temperatures of (a) 90°C and (b) 110°C.

Figure S2. EDS spectra of the $Cs_3Bi_2Br_9$ films.

Figure S3. XPS spectra of the $Cs_3Bi_2Br_9$ films.

Figure S4. Absorption spectrum of the Cs₃Bi₂Br₉/GaN films.

Figure S5. The time-resolved PL decay and fitting curve of $Cs_3Bi_2Br_9$.

Figure S6. (a) I-V characteristics of In electrodes on GaN. (b) I-V characteristics of Au electrodes on Cs₃Bi₂Br₉.

Figure S7. Spectral response of the device.

Figure S8. (a) Optical and (b) SEM image of PDs arrays.

Device	P _{min}	λ	Bias	R	D*	τ_r/τ_d	Ref
	(mW cm⁻²)	(nm)	(V)	(A/W)	(Jones)	(s)	
GaN/Cs ₃ Bi ₂ Br ₉	1.34 × 10⁻⁵	405	0	24.87 m	3.02 × 10 ¹¹	17.4/17.6 m	This work
GaN/CsPbBr ₃	_	310	0	1.08 m	_	0.74/7.20	[1]
Cul/CsCu ₂ I ₃ /GaN	0.01	365	0	71.7 m	3.3 × 10 ¹²	8.8/0.32	[2]
TiO ₂ /Cs ₂ AgBiBr ₆ /Cu SCN	5 × 10 ⁻⁶	405	0	0.34m	1.03 × 10 ¹³	-	[3]
(BA) ₂ FAPb ₂ I ₇ :FACI/ C8BTBT	0.25 × 10⁻³	405	2	2.3	3.2 × 10 ¹²	9.74/8.91 µ	[4]
FAPb _{0.5} Sn _{0.5} I ₃ /SnS QDs	_	850	0	0.522	2.57 × 10 ¹²	0.029/0.012	[5]
MAPbl ₃ /Cs ₂ AgBiBr ₆	—	622	-20	16.8 m	1.33 × 10 ¹¹	70.3/68.6 m	[6]
MAPbl ₃ /Si	0.05	970	-2	18.4 m	1.8 × 10 ¹²	_	[7]
ZnO/MAPbBr ₃ - PMMA/PTAA	244 pW	442	0	0.34	1.24 × 10 ¹³	0.18/0.22	[8]

Table S1 Summary of the performance of heterojunction PDs

Reference

1 J. Zhang, B. Jiao, J. Dai, D. Wu, Z. Wu, L. Bian, Y. Zhao, W. Yang, M. Jiang, S. Lu, *Nano Energy*, 2022, **100**, 107437.

2 X. Zhou, C. Wang, J. Luo, L. Zhang, F. Zhao, Q. Ke, *Chem. Eng. J.*, 2022, **450**, 136364.

3 G. Yan, Z. Ji, Z. Li, B. Jiang, M. Kuang, X. Cai, Y. Yuan, W. Mai, *Sci. China Mater.*, 2020, **64**, 198.

4 T. Wang, D. Zheng, J. Zhang, J. Qiao, C. Min, X. Yuan, M. Somekh, F. Feng, *Adv. Funct. Mater.*, 2022, **32**, 2208694.

5 Z. Liu, Z. Zhang, X. Zhang, X. Li, Z. Liu, G. Liao, Y. Shen, M. Wang, *Nano Lett.*, 2023, **23**, 1181.

6 M. Wang, Y. Xu, X. Wang, Y. Li, J. Zhao, Y. Pan, J. Chen, Q. Li, Z. Zhao, J. Wu, W. Lei, *APL Mater.*, 2022, **10**, 041101.

7 Z. Zhang, C. Xu, C. Zhu, X. Tong, C. Fu, J. Wang, Y. Cheng, L. Luo, *Sens. Actuator A: Phys.*, 2021, **332**, 113176.

8 J. Zeng, C. Meng, X. Li, Y. Wu, S. Liu, H. Zhou, H. Wang, H. Zeng, *Adv. Funct. Mater.*, 2019, **29**, 1904461.