Electronic Supplementary Information

Effect of Channel Thickness on Radiation Hardness of Solution-Processed

Oxide Thin Film Transistors

Hyunwoo Kang,¹ Dongil Ho,¹ Youngseok Kim,¹ Jaeseung Kim,² Hyunjung Kim,² and Choongik Kim¹,*

¹Department of Chemical and Biomolecular Engineering, Sogang University, 1 Shinsoo-dong,

Mapo-gu, Seoul 04107, Republic of Korea

² Department of Physics, Sogang University, Seoul 04107, Republic of Korea

E-mail: choongik@sogang.ac.kr

Keywords: Metal oxide semiconductors; thin film transistors; channel thickness; radiation-hard; proton irradiation

	E _{gap} (eV)	ΔE_{VB} (eV)	ΔE_{CB} (eV)
$t_{ch} = 4 nm$	3.81	2.61	1.20
$t_{ch} = 5 nm$	3.47	2.76	0.71
$t_{ch} = 6.2 \text{ nm}$	3.38	2.91	0.44

Table S1. A summary of measured optical bandgap (E_{gap}), the energy from the valence band maximum to the fermi level (ΔE_{VB}), and the conduction band offsets (ΔE_{CB}) for ZITO thin films with different t_{chS} from UV-vis spectroscopy and XPS

ZITO / SiO ₂ 100nm	μ	Ion/Ioff	V _{th}	Von	SS
1 st cycle	10.3 ± 1.1	$(1.3 \pm 0.5) \times 10^{7}$	0.2 ± 0.4	0 ± 0.3	1.1 ± 0.3
2 nd cycle	11.7 ± 2.5	$(3.6 \pm 1.7) \times 10^{7}$	-0.6 ± 1.2	-4 ± 0.9	2.6 ± 0.5
3 rd cycle	13.2 ± 2.9	$(1.4 \pm 0.7) \times 10^4$	-4.8 ± 1.4	-	3.1 ± 1.0
4 th cycle	13.9 ± 3.3	$(1.1 \pm 0.6) \times 10^4$	-7.9 ± 1.6	-	3.8 ± 1.2
5 th cycle	14.3 ± 3.9	$(1.1 \pm 0.5) \times 10^4$	-10.5 ± 2.0	-	4.0 ± 1.6
6 th cycle	13.2 ± 3.1	$(2.8 \pm 1.6) \times 10^{6}$	-8.2 ± 1.5	-10.5 ± 1.2	2.9 ± 0.9
7 th cycle	13.2 ± 1.5	$(5.6\pm 3.1) imes 10^{6}$	-7.6 ± 1.4	-10.2 ± 1.2	2.6 ± 1.0
8 th cycle	13.1 ± 1.4	$(4.7 \pm 2.0) \times 10^{6}$	-7.3 ± 1.3	-9.9 ± 1.2	2.4 ± 0.7
9 th cycle	13.1 ± 1.5	$(3.5 \pm 1.0) imes 10^{6}$	-7.2 ± 1.3	-9.9 ± 1.2	2.4 ± 0.8
10 th cycle	13.1 ± 1.4	$(3.2 \pm 1.4) \times 10^{6}$	-7.1 ± 1.4	-9.9 ± 1.2	2.3 ± 0.5
11 th cycle	13.1 ± 1.3	$\begin{array}{c}(3.4\pm1.9)\times\\10^6\end{array}$	-7.0 ± 1.3	-9.6 ± 1.5	2.2 ± 0.7
12 th cycle	13.0 ± 1.4	$(3.1 \pm 2.1) \times 10^{6}$	-6.8 ± 1.2	-9.6 ± 1.5	2.1 ± 0.6
13 th cycle	13.0 ± 1.4	$\begin{array}{c} (3.6\pm1.8)\times\\ 10^6 \end{array}$	-6.7 ± 1.3	-9.6 ± 1.2	2.0 ± 0.6
14 th cycle	13.0 ± 1.3	$(3.7 \pm 2.0) imes 10^{6}$	-6.7 ± 1.3	-9.3 ± 1.5	2.0 ± 0.5

Table S2. Representative charge-carrier mobility (μ , cm²/Vs), current on/off ratio (I_{on}/I_{off}), threshold voltage (V_{th} , V), turn-on voltage (V_{on} , V), and subthreshold swing (SS, V/dec) ZITO TFT with t_{ch} value of 4 nm on SiO₂ 100 nm devices during in-situ proton irradiation with a dose of 10¹³ cm⁻².^a The average values are obtained from 5 samples.

^a Gray area indicates device characteristics during proton irradiation.

ZITO / SiO ₂ 100nm	μ	Ion/Ioff	V _{th}	Von	SS
1 st cycle	13.2 ± 1.5	$(7.0 \pm 3.2) \times 10^{6}$	-2.0 ± 0.8	-3 ± 0.6	1.1 ± 0.4
2 nd cycle	18.5 ± 3.0	$(1.9 \pm 1.0) \times 10^{7}$	-4.5 ± 3.1	-	-
3 rd cycle	19.9 ± 3.3	$(2.1 \pm 0.8) \times 10^2$	-19.2 ± 5.9	-	-
4 th cycle	20.9 ± 3.5	$(1.8 \pm 0.6) \times 10^{1}$	-35.5 ± 8.6	-	-
5 th cycle	21.6 ± 3.6	6.8 ± 4.2	-45.8 ± 12.2	-	-
6 th cycle	16.4 ± 4.5	4.9 ± 3.7	-58.0 ± 15.4	-	-
7 th cycle	16.2 ± 1.8	5.1 ± 3.2	-62.1 ± 7.4	-	-
8 th cycle	16.5 ± 1.7	5.1 ± 3.3	$\textbf{-60.2} \pm 8.7$	-	-
9 th cycle	16.5 ± 1.7	5.3 ± 3.1	$\textbf{-59.4} \pm 8.4$	-	-
10 th cycle	16.2 ± 1.8	5.3 ± 3.2	$\textbf{-58.8} \pm 8.1$	-	-
11 th cycle	16.3 ± 1.9	5.4 ± 3.0	$\textbf{-58.2} \pm 7.6$	-	-
12 th cycle	16.1 ± 1.8	5.7 ± 2.9	$\textbf{-57.7} \pm 7.2$	-	-
13 th cycle	16.1 ± 1.7	5.8 ± 2.6	-57.6 ± 7.0	-	-
14 th cycle	16.0 ± 1.8	5.8 ± 2.5	-57.1 ± 7.4	-	-

Table S3. Representative charge-carrier mobility (μ , cm²/Vs), current on/off ratio (I_{on}/I_{off}), threshold voltage (V_{th} , V), turn-on voltage (V_{on} , V), and subthreshold swing (SS, V/dec) for ZITO TFT with t_{ch} value of 5 nm on SiO₂ 100 nm devices during in-situ proton irradiation with a dose of 10¹³ cm⁻².^a The average values are obtained from 5 samples.

^a Gray area indicates device characteristics during proton irradiation.

ZITO / SiO ₂ 100nm	μ	Ion/Ioff	V _{th}	Von	SS
1 st cycle	15.6 ± 1.2	$(7.8 \pm 2.9) \times 10^{6}$	-3.5 ± 1.0	-3.7 ± 0.9	2.0 ± 0.5
2 nd cycle	21.8 ± 3.4	$(1.7 \pm 0.8) imes 10^{6}$	-6.0 ± 3.1	-	-
3 rd cycle	23.6 ± 3.7	$(7.4 \pm 5.3) \times 10^{1}$	-22.5 ± 8.2	-	-
4 th cycle	25.3 ± 3.6	7.3 ± 2.6	-37.0 ± 9.5	-	-
5 th cycle	23.7 ± 3.9	5.5 ± 2.1	-55.1 ± 14.4	-	-
6 th cycle	17.7 ± 4.1	3.5 ± 2.3	-85.3 ± 19.3	-	-
7 th cycle	17.6 ± 3.5	3.6 ± 2.1	-77.1 ± 10.3	-	-
8 th cycle	17.5 ± 3.1	3.5 ± 2.3	-76.1 ± 10.7	-	-
9 th cycle	17.4 ± 3.0	3.6 ± 2.4	-75.5 ± 9.5	-	-
10 th cycle	17.4 ± 3.2	3.5 ± 2.3	$\textbf{-75.0} \pm 9.4$	-	-
11 th cycle	17.4 ± 3.1	3.6 ± 2.2	$\textbf{-74.9} \pm 8.8$	-	-
12 th cycle	17.3 ± 3.3	3.7 ± 2.1	$\textbf{-74.6} \pm 9.1$	-	-
13 th cycle	17.2 ± 3.1	3.7 ± 2.0	$\textbf{-74.4} \pm 9.0$	-	-
14 th cycle	17.2 ± 2.8	3.8 ± 2.0	-74.3 ± 8.7	-	-

Table S4. Representative charge-carrier mobility (μ , cm²/Vs), current on/off ratio (I_{on}/I_{off}), threshold voltage (V_{th} , V), turn-on voltage (V_{on} , V), and subthreshold swing (SS, V/dec) for ZITO TFT with t_{ch} value of 6.2 nm on SiO₂ 100 nm devices during in-situ proton irradiation with a dose of 10^{13} cm⁻².^a The average values are obtained from 5 samples.

^a Gray area indicates device characteristics during proton irradiation.

ZITO / SiO ₂ 100nm	Dose	μ	Ion/Ioff	V _{th}	Von	SS
t _{ch} = 4 nm	Referenc e	10.3 ± 1.1	$(1.3 \pm 0.5) \times 10^7$	0.2 ± 0.4	0 ± 0.3	1.1 ± 0.3
	10 ¹³ dose	14.3 ± 3.9	$(1.1 \pm 0.5) \times 10^4$	-10.5 ± 2.0	-	4.0 ± 1.6
	After 6 h	10.4 ± 0.9	$(4.0 \pm 2.1) \times 10^{6}$	-0.7 ± 0.3	-1 ± 0.6	1.5 ± 0.6
$t_{ch} = 5 \text{ nm}$	Referenc e	13.2 ± 1.5	$(7.0 \pm 3.2) \times 10^{6}$	-2.0 ± 0.8	-3 ± 0.6	1.1± 0.5
	10 ¹³ dose	16.4 ± 4.5	4.9 ± 3.7	$\textbf{-58.0} \pm 15.4$	-	-
	After 6 h	16.0 ± 1.4	$(1.6 \pm 0.7) \times 10^4$	-22.1 ± 6.3	-	-
t _{ch} = 6.2 nm	Referenc e	15.6 ± 1.2	$(7.8 \pm 4.3) \times 10^{6}$	-3.5 ± 1.0	-3.7 ± 0.9	2.0 ± 0.5
	10 ¹³ dose	17.7 ± 4.1	3.5 ± 2.3	-85.3 ± 19.3	-	-
	After 6 h	17.0 ± 1.0	$(1.5 \pm 0.7) \times 10^1$	-39.1 ± 7.5	-	-

Table S5. Representative charge-carrier mobility (μ , cm²/Vs), current on/off ratio (I_{on}/I_{off}), threshold voltage (V_{th} , V), turn-on voltage (V_{on} , V), and subthreshold swing (SS, V/dec) for ZITO TFTs with different t_{ch} values on SiO₂ 100 nm devices before and right after and 6 h after proton irradiation with a dose of 10^{13} cm⁻². The average values are obtained from 5 samples.

Figure S1. Schematic diagram of high-energy proton irradiation on bottom-gate/top-contact amorphous zinc-indium-tin oxide (a-ZITO) thin-film transistor device.

Figure S2. X-ray Reflectometry (XRR) of ZITO thin films with different t_{ch} values of 4 nm, 5 nm, and 6.2 nm.

Figure S3. $(I_{ds})^{1/2}$ vs V_g plots of pristine ZITO thin film transistors (a) with different t_{ch} values (4 nm, 5 nm, and 6.2 nm), (b)-(d) before (solid black lines) and 6 h after 5 MeV proton irradiation dose of 10^{13} cm⁻² (solid red lines): t_{ch} value of (b) 4 nm, (c) 5 nm, and (d) 6.2 nm.

before proton irradiation: t_{ch} value of (a) 4 nm, (b) 5 nm, and (c) 6.2 nm.

Figure S5. Atomic force microscope (AFM) images of ZITO thin films before and after 5 MeV proton irradiation (10^{13} cm⁻² dose): ZITO thin films with different t_{chS} of (a) 4 nm before proton irradiation, (b) 5 nm before proton irradiation, (c) 6.2 nm before proton irradiation, (d) 4 nm after proton irradiation, (e) 5 nm after proton irradiation, (f) 6.2 nm after proton irradiation. The scale bars correspond to 2 μ m. R_q is RMS (root-mean-square) roughness.

Figure S6. Grazing-incidence X-ray diffraction (GIXRD) spectra of ZITO thin films with different t_{ch} values before and after 5 MeV proton irradiation doses of 10^{13} cm⁻²: ZITO thin film with t_{ch} values of 4, 5, and 6.2 nm (a) before and (b) after proton irradiation.

Figure S7. X-ray photoelectron spectroscopy (XPS) data of amorphous zinc-indium-tin oxide semiconductor thin film before and after 5 MeV proton irradiation (dose of 10^{13} cm⁻²). O1s spectra for ZITO thin film with t_{ch} values of a) 4 nm, b) 5 nm, and c) 6.2 nm.

Figure S8. (a) Dependence of photon energy on $(\alpha hv)^2$ for ZITO thin films with different t_{chS} on glass substrate, XPS spectrum measured near the valence band for ZITO thin films with different t_{ch} of (b) 4 nm, (c) 5 nm, and (d) 6.2 nm.

Figure S9. Transfer curve of ZITO thin film transistors with different t_{chS} in linear region at before proton (solid black lines), right after proton with electrical bias (solid red lines), 6 h after proton (solid green lines): ZITO TFT with t_{ch} values of (a) 4 nm, (b) 5 nm, and (c) 6.2 nm.