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1. Experimental Section

1.1 General

All reagents were purchased from commercial sources without further pur ification. Anhydrous
dichloromethane (DCM) was distilled from CaH,. Anhydrous THF was distilled from sodium-
benzophenone immediately prior to use. 'H and '*C NMR spectra were recorded using 500 MHz
Bruker spectrometer in CDCl3, CD,Cl,, CD3CN, or THF-ds with tetramethylsilane (TMS) as the
internal standard. The chemical shift was recorded in ppm and the following abbreviations were
used to explain the multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. HR
APCI mass spectra were recorded on a MicrOTOFQII instrument. UV-vis absorption was recorded
on a Shimadzu UV-3600 spectrophotometer. Cyclic voltammetry measurements were performed in
dry dichloromethane on a CHI 620C electrochemical analyzer with a three-electrode cell, using 0.1
M BwNPFs as supporting electrolyte, AgCl/Ag as reference electrode, gold disk as working
electrode, Pt wire as counter electrode, and scan rate at 100 mV s™'. The potential was externally
calibrated against the ferrocene/ferrocenium couple. The single crystal was measured at low
temperature (T = 100K) on a four circles goniometer Kappa geometry Bruker AXS D8 Venture
equipped with a Photon 100 CMOS active pixel sensor detector using a Copper monochromatized
(= 1.54178 A) X-Ray radiation. Continuous wave X-band ESR spectra were obtained with a Bruker
ELEXSYS E500 spectrometer using a variable temperature Bruker liquid nitrogen cryostat.

1.2. Synthetic procedures and characterization data

Br O
GCHO

A mixture of THF (25 mL) and H,O (5 mL) was sparged with N». After 20 min, 3 (1.84 g, 10 mmol),
5 (2.4 g, 12 mmol), K,CO3 (2.76 g, 20 mmol) and Pd(PPhs)4 (300 mg, 0.26 mmol) were added to
the flask. The reaction mixture was heated at 90 °C for 24 h under nitrogen. After cooling to room
temperature, the resulting suspension was filtered and washed with diethyl ether. The combined
filtrates were concentrated under reduced pressure and purified on a silica-gel column
chromatography (hexane/CH>Cl, = 3:1, v/v) to give 2.44 g of compound 6 in 94% yield as a
colorless solid. "H NMR (CDCls, 500 MHz): & ppm 9.80 (s, 1H), 8.04 (dd, °J=7.8 Hz, *J= 1.2 Hz,
1H), 7.69 (dd, °J = 8.0 Hz, *J= 1.3 Hz, 1H), 7.66 (td, °J = 7.5 Hz, *J = 1.5 Hz, 1H), 7.54 (tt, °J =
7.5 Hz, “J = 1.1 Hz, 1H), 7.41 (td, °J = 7.5 Hz, *J = 1.3 Hz, 1H), 7.33-7.28 (m, 3H); *C NMR
(CDCl3, 125 MHz) 6 ppm 191.6, 144.6, 139.0, 133.8, 133.7, 132.9, 131.7, 131.0, 130.0, 128.7, 127.6,
127.5, 124.0; HR-MS (APCI): caled for C13HoBrO (M+H)*: 260.9837; found, 260.9838 (error: 0.38

ppm).
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A mixture of THF (25 mL) and H,O (5 mL) was sparged with N». After 20 min, 4 (2.34 g, 10 mmol),
5 (2.4 mg, 12 mmol), K»CO3 (2.76 g, 20 mmol) and Pd(PPhs)4 (300 mg, 0.26 mmol) were added to
the flask. The reaction mixture was heated at 90 °C for 24 h under nitrogen. After cooling to room
temperature, the resulting suspension was filtered and washed with diethyl ether. The combined
filtrates were concentrated under reduced pressure and purified on a silica-gel column
chromatography (hexane/CH>Cl, = 3:1, v/v) to give 3.04 g of compound 7 in 98% yield as a
colorless solid. 'H NMR (CDCls, 500 MHz): § ppm 9.83 (s, 1H), 8.08 (d, J= 8.65 Hz, 1H), 7.99 (d,
J=8.6 Hz, 1H), 7.95 (d, J = 8.15 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.63 (td, °J=7.1 Hz, *J= 1.6
Hz, 1H), 7.51-7.44 (m, 3H), 7.33 (td, °*J = 7.7 Hz, *J= 1.7 Hz, 1H), 7.38 (dd, *J = 7.4 Hz, *J= 1.7
Hz, 1H); *C NMR (CDCl;, 125 MHz) 6 ppm 192.1, 145.2, 136.7, 136.4, 133.1, 132.7, 132.0,131.2,
130.4,129.2,129.1, 128.6, 127.5, 127.4,127.2, 125.1, 122.3; HR-MS (APCI): calcd for Ci7H12BrO
(M+H)": 311.0027; found, 311.0026 (error: -0.52 ppm).

Br 8

To an oven dried flask was added THF (150 mL) and 2.6-dichloro-1-bromobenzene (3.36 g, 15
mmol). The mixture was cooled to 0 °C and isopropylmagnesium chloride (2.0 M, 7 mL) was added
slowly. The reaction was stirred for 2 h and then the compound 6 (2.34 g, 9 mmol) was added
quickly in one portion. The mixture was warmed to room temperature overnight. The reaction was
quenched with saturated NH4Cl solution and the organic phase was washed with water and then
brine solution. The organic layer was dried over Na;SO4 and the volatiles removed. The crude
product was then dissolved in 100 mL dry DCM under nitrogen atmosphere and 2 mL of BF3-OEt
was added. The mixture was stirred for 30 minutes and quenched by methanol. The solvent was
removed under reduced pressure and the residue was purified by column chromatography
(hexane:DCM = 5:1, v/v) to give compound 8 (86%, 3.0 g) as a colorless solid. 'H NMR (500 MHz,
CDCl5): & (ppm) 8.68 (d, J = 7.85 Hz, 1H), 7.58 (d, J=7.9 Hz, 1H), 7.52 (dd,*J=8.0 Hz, *J=1.3
Hz, 1H), 7.48 (t, J= 7.6 Hz, 1H), 7.35 (td, °*J = 7.5 Hz, *J= 0.7 Hz, 1H), 7.26-7.23 (m, 1H), 7.21-
7.17 (m, 2H), 7.14-7.10 (m, 2H), 6.01 (s, 1H); '*C NMR (125 MHz, CDCl3): § (ppm) 148.2, 145.7,
141.0, 139.9, 137.5, 136.1, 136.0, 132.4, 130.1, 129.2, 128.3, 128.1, 128.0, 127.2, 123.8, 123.7,
122.8, 117.3, 50.7; HR-MS analysis (APCI): calcd for Ci9HyBrCl, (M+H)": 388.9421; found,
388.9423 (error: 0.52 ppm).
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Cl O 5
Q"O

To an oven dried flask was added THF (150 mL) and 2.6-dichloro-1-bromobenzene (3.36g, 15
mmol). The mixture was cooled to 0 °C and isopropylmagnesium chloride (2.0 M, 7 mL) was added
slowly. The reaction was stirred for 2 h and then the compound 7 (2.79 g, 9 mmol) was added
quickly in one portion. The mixture was warmed to room temperature overnight. The reaction was
quenched with saturated NH4Cl solution and the organic phase was washed with water and then
brine solution. The organic layer was dried over Na;SO4 and the volatiles removed. The crude
product was then dissolved in 100 mL dry DCM under nitrogen atmosphere and 2 mL of BF3-OEt
was added. The mixture was stirred for 30 minutes and quenched by methanol. The solvent was
removed under reduced pressure and the residue was purified by column chromatography
(hexane:DCM = 5:1, v/v) to give compound 9 (84%, 3.31 g) as a colorless solid. "H NMR (500
MHz, CDCl): & (ppm) 9.18 (d, J = 8.6 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H),
7.74 (d, J = 7.85 Hz, 1H), 7.61 (td, °J = 8.2 Hz, *J = 1.4 Hz, 1H), 7.55-7.51 (m, 2H), 7.31 (d, J =
8.2 Hz, 1H), 7.23 (dt, °*J = 7.3 Hz, *J = 1.2 Hz, 1H), 7.20 (t, J = 8.1 Hz, 1H), 7.15 (t, J = 7.65 Hz,
1H), 7.11 (dd, °J = 8.0 Hz, “J = 1.2 Hz, 1H), 6.07 (s, 1H); 3*C NMR (125 MHz, CDCl5): § (ppm)
149.4, 145.1, 142.7, 137.8, 136.1, 135.7, 134.4, 134.1, 130.2, 130.1, 129.3, 129.1, 128.7, 128.4,
127.8, 125.5, 124.9, 122.6, 121.4, 116.4, 51.7; HR-MS analysis (APCI): calcd for C23H3BrCl,
(M+H)": 438.9656; found, 438.9659 (error: 0.68 ppm).

A
0

Bpin 10

To an oven dried flask was added 8 (2.8 g, 7.2 mmol), B(pin). (3.24 g, 14.4 mmol), Pd(dppf)Cl»
(527 mg, 0.72 mmol), KOAc (2.98 g, 21.6 mmol) and dioxane (20 mL). The reaction mixture was
heated at 90 °C for 15 h under nitrogen. After cooling to room temperature, the resulting suspension
was filtered and washed with diethyl ether. The combined filtrates were concentrated under reduced
pressure and purified on a silica-gel column chromatography (hexane/CH>Cl, = 2:1, v/v) to give
2.26 g of compound 10 in 72% yield as a colorless solid. '"H NMR (CDCl3, 500 MHz): & ppm 8.81
(d, J=7.85 Hz, 1H), 7.89 (d,J=7.15 Hz, 1H), 7.52 (dd, °J = 8.0 Hz, /= 1.2 Hz, 1H), 7.43 (t, J =
7.6 Hz, 1H), 7.32-7.27 (m, 3H), 7.22 (d, J= 7.35 Hz, 1H), 7.18 (t,J = 7.95 Hz, 1H), 7.12 (dd, °*J =
8.0 Hz, “J= 1.1 Hz, 1H), 5.95 (s, 1H), 1.51 (s, 6H), 1.49 (s, 6H); 1*C NMR (CDCls, 125 MHz) §
ppm 146.3,145.9, 145.7, 142.9, 137.6, 136.9, 136.0, 135.5, 130.1, 128.8, 128.2, 127.2, 126.4, 126.2,
124.3, 123.6, 84.3, 50.5, 25.2; HR-MS (APCI): caldc for CosH23BCL,O> (M+H)" : 437.1168; found,
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437.1165 (error: -0.69 ppm).

(o

e
OOO

To an oven dried flask was added 9 (3 g, 6.8 mmol), B(pin) (3.45 g, 13.6 mmol), Pd(dppf)Cl, (498
mg, 0,68 mmol), KOAc (2g, 20.4 mmol) and dioxane (20 mL). The reaction mixture was heated at

11 Bpin

90 °C for 15 h under nitrogen. After cooling to room temperature, the resulting suspension was
filtered and washed with diethyl ether. The combined filtrates were concentrated under reduced
pressure and purified on a silica-gel column chromatography (hexane/CH>Cl, = 2:1, v/v) to give
2.16 g of compound 11 in 65% yield as a colorless solid. 'H NMR (CDCls, 500 MHz): § ppm 8.50
(d, J=8.3 Hz, 1H), 7.92 (d, /= 8.0 Hz, 1H), 7.79 (t, J = 6.6 Hz, 2H), 7.57-7.51 (m, 2H), 7.49 (t, J
= 7.4 Hz, 1H), 7.35-7.32 (m, 2H), 7.30 (t,J = 7.3 Hz, 1H), 7.17 (t, J = 8.0 Hz, 1H), 7.07 (dd, °J =
8.0 Hz, “J= 1.1 Hz, 1H), 6.02 (s, 1H), 1.42 (s, 6H), 1.39 (s, 6H); 1*C NMR (CDCls, 125 MHz) §
ppm 146.9, 145.2, 144.3, 138.5, 137.8, 136.3, 136.2, 133.9, 133.6, 130.1, 129.4, 128.9, 128.7, 128.2,
126.2, 125.7,125.6, 125.3, 125.2, 122.0, 84.4, 51.3, 25.4; HR-MS (APCI): caldc for C2oH2sBC1,0,
(M+H)" : 487.1403; found, 487.1405 (error: 0.52 ppm).

A mixture of THF (15 mL) and H,O (3 mL) was sparged with N,. After 20 min, 10 (654 mg, 1.5
mmol), 12 (268 mg, 0.5 mmol), K»CO3(0.35 g, 2.5 mmol) and Pd(PPh3)4 (200 mg, 0.17 mmol) were
added to the flask. The reaction mixture was heated at 90 °C for 48 h under nitrogen. After cooling
to room temperature, the resulting suspension was filtered and washed with diethyl ether. The
combined filtrates were concentrated under reduced pressure and purified on a silica-gel column
chromatography (hexane/CH,Cl, = 1:1, v/v) to give 457 mg of 13 in 92% yield as a yellow solid.
The structural characterization of 13 with NMR spectroscopy is not possible due to the presence of
a mixture of non-isolable stereoisomers resulting in a very complex NMR spectrum (Figures S34
and 35). HR-MS (APCI): caldc for Cs2HasClsOs (M+H)": 995.2150; found, 995.2153 (error: 0.3

ppm).
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A mixture of THF (15 mL) and H>O (3 mL) was sparged with N». After 20 min, 11 (0.73 g, 1.5
mmol), 12 (268 mg, 0.5 mmol), K,CO3(0.35 g, 2.5 mmol) and Pd(PPh3)4 (200 mg, 0.17 mmol) were
added to the flask. The reaction mixture was heated at 90 °C for 48 h under nitrogen. After cooling
to room temperature, the resulting suspension was filtered and washed with diethyl ether. The
combined filtrates were concentrated under reduced pressure and purified on a silica-gel column
chromatography (hexane/CH,Cl, = 1:1, v/v) to give 470 mg of 14 in 86% yield as a yellow solid.
The structural characterization of 14 with NMR spectroscopy is not possible due to the presence of
a mixture of non-isolable stereoisomers resulting in a very complex NMR spectrum (Figures S36
and 37). HR-MS (APCI): caldc for C7oHsoCl4O4 (M+H)": 1095.2463; found, 1095.2465 (error: 0.18

ppm).

To an oven dried flask was added THF (150 mL) and 2.6-dichloro-1-bromobenzene (1.12 g, 5 mmol).
The mixture was cooled to 0 °C and isopropylmagnesium chloride (2.0 M, 2 mL) was added slowly.
The reaction was stirred for 2 h and then the compound 13 (100 mg, 0.1 mmol) was added quickly
in one portion. The mixture was warmed to room temperature overnight. The reaction was quenched
with saturated NH4Cl solution and the organic phase was washed with water and then brine solution.
The organic layer was dried over Na,SO4 and the volatiles removed. The crude product was then
dissolved in 100 mL dry DCM under nitrogen atmosphere and 0.2 mL of BF3-OEt; was added. The
mixture was stirred for 30 minutes and quenched by methanol. The solvent was removed under
reduced pressure. Under argon atmosphere and in the dark, the crude product was dissolved in 20
mL dry THF and tetrabutoxide potassium (10 equiv., 112 mg, 1 mmol) and 18-crown-6 (10 equiv.,
264 mg 1 mmol) were added. The resulting mixture was stirred at room temperature for 24 h, then
p-chloranil (5 equiv., 127 mg, 0.5 mmol) was added, and the mixture was stirred for an additional

30 min. Then the solvent was removed under reduced pressure at room temperature and the resulting
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residue was directly subjected to flash chromatography (silica gel was neutralized with EN,
DCM/Hexane = 1:3). Black solid 1 was obtained in 84% yield (105 mg). "H NMR (500 MHz, THF-
ds): o (ppm) 9.30 (s, 2H), 8.22 (d, J= 7.4 Hz, 2H), 7.63 (d, J=7.8 Hz, 6H), 7.58 (d, /= 8.1 Hz, 4H),
7.51 (t,J=8.1 Hz, 2H), 7.45 (t, J= 8.1 Hz, 2H), 7.04 (t, /= 7.4 Hz, 2H), 6.86 (d, J = 7.45 Hz, 2H),
6.68 (t, J = 7.4 Hz, 2H), 6.46-6.40 (m, 4H), 4.16 (t, J = 6.1 Hz, 4H), 1.72-1.68 (m, 4H), 1.50-1.42
(m, 4H), 0.91 (t, J = 7.4 Hz, 6H); HR-MS analysis (APCI): calcd for C74H46ClsO, (M+H)":
1247.1073; found, 1247.1069 (error: -0.5 ppm).

To an oven dried flask was added THF (150 mL) and 2.6-dichloro-1-bromobenzene (1.12 g, 5 mmol).
The mixture was cooled to 0 °C and isopropylmagnesium chloride (2.0 M, 2 mL) was added slowly.
The reaction was stirred for 2 h and then the compound 14 (100 mg, 0.091 mmol) was added quickly
in one portion. The mixture was warmed to room temperature overnight. The reaction was quenched
with saturated NH4Cl solution and the organic phase was washed with water and then brine solution.
The organic layer was dried over Na,SO4 and the volatiles removed. The crude product was then
dissolved in 100 mL dry DCM under nitrogen atmosphere and 0.2 mL of BF3-OEt; was added. The
mixture was stirred for 30 minutes and quenched by methanol. The solvent was removed under
reduced pressure. Under argon atmosphere and in the dark, the crude product was dissolved in 20
mL dry THF and tetrabutoxide potassium (10 equiv., 100 mg, 0.91 mmol) and 18-crown-6 (10
equiv., 240 mg, 0.91 mmol) were added. The resulting mixture was stirred at room temperature for
24 h, then p-chloranil (5 equiv., 116 mg, 0.46 mmol) was added, and the mixture was continued
stirred for 30 min. Then the solvent was removed under reduced pressure at room temperature and
the resulting residue was directly subjected to flash chromatography (silica gel was neutralized with
Et;N, DCM/Hexane = 1:3). Black solid 2 was obtained in 83% yield (102 mg). 'H NMR (500 MHz,
THF-ds): 6 (ppm) 7.79 (s, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.63 (t, J = 8.3 Hz, 4H), 7.58 (d, J = 8.1
Hz, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.50 (t, J = 8.7 Hz, 4H), 7.68 (d, J = 6.1 Hz, 2H), 7.46 (s, 2H),
7.09 (d,J = 8.1 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.76 (t,J = 7.1 Hz, 2H), 6.70 (td, °J = 8.2 Hz, *J
= 1.5 Hz, 2H), 6.41 (d, J=9.2 Hz, 2H), 6.30 (d, J = 9.2 Hz, 2H), 4.18-4.08 (m, 4H), 1.73-1.71 (m,
4H), 1.50-1.42 (m, 4H), 0.92 (t, J = 7.4 Hz, 6H); HR-MS analysis (APCI): calcd for Cg:Hs0Cl302
(M+H)": 1347.1369; found, 1347.1392 (error: 1.7 ppm).

1.3. Chemical titration of 1 and 2

Typical oxidation procedure to radical cation and dication: NO*SbFs (1 equiv. for radical cation,
2 equiv. for dication) dissolved in acetonitrile (50 pl) was added into the dry DCM solution of 1 or
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2. The oxidized compounds were formed in 5 mins, and the solvent was removed under vacuum to
give the radical cation and dication without further purification.

Typical reduction procedure to radical anion and dianion: The freshly prepared sodium
anthracenide solution (0.1 M in dry THF, 1 equiv. for radical anion, 2 equiv. for dianion) was added
dropwise to dry THF solution of 1 or 2. The reduced compounds were in situ formed in 5 mins
without further purification.

1.4 Additional spectrum
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Figure S1. 2D COSY NMR (500 MHz) spectrum of compound 1 in THF-ds at 298 K.
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Figure S2. 2D ROESY NMR (500 MHz) spectrum of compound 1 in THF-ds at 298 K.
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Figure S3. 2D COSY NMR (500 MHz) spectrum of compound 2 in THF-ds at 298 K.
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Figure S7. Chiral HPLC chromatogram of 2. (Column: CHIRALPAK ID (4.6 x 250 mm x 5u); UV
detector: 275 nm; Mobile phase: Hexane:IPA (65/35, v/v); Flow rate: 1.0 mL/min). Note that 2 is
soluble in DCM, chloroform, THF, EA and toluene, while it is slightly soluble in hexane, alcohols
and acetonitrile. Therefore, the poor solubility of a mixture of 2 in mobile phase (Hexane/IPA)

hampered large-scale preparative HPLC separation.
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Figure S8. VT ESR spectra and fitted / x T - T curves by using Bleaney-Bowers equation of
compounds 1%* (a, b), 2** (¢, d) 1* (e, 1), and 2* (g, h) in frozen solution.

2. Estimation of the energy barrier for the isomerization process

The exchange rate constant k was estimated according to the literature.! Three characteristic
exchange regions were observed in all cases if available: (1) a slow exchange region, in which the
exchange is slower than the spectrometer timescale and two separate peaks are observed; (2)
coalescence, at which two peaks completely merge into one peak; and (3) fast exchange region, in
which the exchange is rapid than the spectrometer and the two peaks are merged into one peak.
Therefore, the exchange rate constant £ can be calculated by individual equation in these three
regions.

(1) At slow exchange temperature (7' < 7¢), two peaks are separated enough, the rate constant k£ can

be determined by comparing the linewidth of a peak with no exchange with the line width of the

peak with little exchange using the following formula: k = w[(Av,)1 — (Avp)1].
2 2
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(i1) For the coalescence temperature (7 = T¢) k can be calculated using: k = % (Avp).

(ii1) When temperature is close to 7c, two separated peaks will overlap with each other but not fully

coalescent, thus the exchange constant at this temperature can then be calculated by: k =
T
Z[@vy)? — Ave)*]2

V2

In these equations, Av is the difference in chemical shift (Hz) between two correlated peaks at one

) -1
At fast exchange temperature (7> Tc): k = Tlv)” (Avy)i — (Avy) 1] .
2 2

temperature in the slow exchange region. Avy is defined as the value of Av at no exchange
temperature (at which the two peaks are mostly separated), and Av, is defined as the value of Av at
all other temperatures in this region if available. (Av)12 is the linewidth (Hz) at half height of peak
at anyone temperature in all region if available. (Avo)i2 is defined as the value of (Av)i2 at no
exchange temperature. (Ave)1/2 is defined as the value of (Av)1,2 at all other temperatures in all region

if available. Tc is defined as coalescence temperature at which two peaks completely merge into one

. . . . k —AH* kg AS*
peak. The obtained & values were then fitted with Eyring equation: ln; = — X ET +lnfB+T'

And then AG* = AHT — TAS*,

Table S1. Parameters obtained from the line-shape analysis based on the VT '"H NMR spectra of 2
in THF-ds.

T (K) (Ave)i2 (Hz) Av. (Hz) k(s
360 Coalescence Temperature 69.19802
350 - 27.62 28.26567
340 17.912 28.77 21.36287
330 13.766 29.04 8.33787
320 12.014 29.38 2.83372
310 11.424 29.67 0.98018
300 11.222 30.35 0.34558
290 11.112 ((Avo)112) 31.15 (Avy) for the separated peak
3. DFT calculations

Theoretical calculations were performed with the Gaussian09 rev. D program suite.” All
calculations were carried out using the density functional theory (DFT) method with Becke’s three-
parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional (B3LYP)
employing the 6-31G(d,p) basis set for all atoms.? Natural orbital occupation number (NOON))
calculations were done by spin unrestricted LC-BLYP/6-31G(d) method and the diradical character
(»0) was calculated according to Yamaguchi’s scheme: yo = 1 — 27/(1 + %)), and T = (nuono —
nrLuNo)/2 (nuomo is the occupation number of the HONO, nruno is the occupation number of the
LUNO).* Time-dependent DFT (TD-DFT) calculations have been performed at the (R)B3LYP/6-
31G(d,p) or (U)B3LYP/6-31G(d,p) level of theory. NICS values were calculated using the standard
GIAO procedure.”> AICD plot was calculated by using the method developed by Herges.®
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Electrostatic potential maps and Mulliken charge were calculated at the B3LYP/6-31G(d,p).

In the study of isomerization and racemization processes, molecular geometries of all stationary
points were optimized at the B3LYP level of DFT with the 6-31G(d) basis set with IEPCM model
as solvation of THF. Harmonic vibration frequency calculations at the same level were performed
to verify all stationary points as local minima (with no imaginary frequency) or transition states
(with one imaginary frequency). IRC calculations’ were also performed to check transition states.

Table S2. Summary of energy of local minimum states and transition states during isomerization
process of 1 (Hartree).”

E (HF) E+ZPE(HF)  H(HLF) G (H.F)
(M,M)-1 -6443.746008  -6442.938882  -6442.873759  -6443.051332
(BM)-1 -6443.743153  -6442.936073  -6442.871034  -6443.046159
TS-1A -6443.742205  -6442.936080  -6442.872345  -6443.044066
TS-1B -6443.734994 6442928403  -6442.864162  -6443.036740

(a) E: electronic energy; ZPE: zero-point energy; H (= E + ZPE + Evip + Evot + Eprans + RT): sum of

electronic and thermal enthalpies; G (= H — TS): sum of electronic and thermal free energies.

Table S3. Summary of energy of local minimum states and transition states during isomerization

process of 2 (Hartree).”

E (HF) E+ZPEMF)  H(ILF) G (H.F)
(M,M)-2 -6751.014390  -6750.114266  -6750.043822  -6750.229372
(BM)-2 -6751.002451 -6750.102273  -6750.031855  -6750.218471
TS-2A -6750.990149  -6750.090624  -6750.020614  -6750.206293
TS-2B -6750.985647  -6750.086568  -6750.016882  -6750.199501

(b) E: electronic energy; ZPE: zero-point energy; H (= E + ZPE + Eyiy + Evot + Eyrans + RT): sum of

electronic and thermal enthalpies; G (= H — TS): sum of electronic and thermal free energies.
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Figure S9. TD DFT simulated spectra of 1 (a), 1" (b), 1** (c) 1~ (d), and 1% (e).
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Table S4. Selected TD-DFT (RB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 1. H=HOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm) Osc. Strength (f) Major contributions

764.2 0.0962 H->L (90%), H-2->L+1 (7%)

735.1 0.1007 HOMO->L+1 (91%), H-2->L (7%)

577.2 0.4137 H-2->L (61%), H-1->L (31%)

577.1 0.3059 H-2->L+1 (89%), H->L (7%)

456.6 0.0704 H-4->L+1 (12%), H-3->L+1 (73%), H-5->L (8%)
429.1 0.0857 H-4->L+1 (69%), H-3->L+1 (12%), H->L+2 (10%)
389.8 0.9817 H->L+2 (73%), H-6->L (6%), H-5->L (4%), H-

4->L+1 (6%)

Table S5. Selected TD-DFT (UB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 1. HFHOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm)  Osc. Strength (f) Major contributions

2644.1 0.1895 H (B)->L (B) (95%), H(A)->L(A) (2%), H-
1(B)->L(B) (3%)

1299.8 0.0963 H-1(A)->L+1(A) (18%), H(A)->L(A) (53%),
H(B)->L+2(B) (24%)

754.1 0.0641 H-2(A)->L(A) (12%), H(A)->L+1(A) (45%), H-
1(B)->L+1(B) (12%), H-3(A)->L+1(A)
(2%), H-1(A)->L(A) (8%)

712.7 0.1453 H-1(A)->L(A) (48%), H-1(B)->L+1(B) (17%),
H(B)->L+1(B) (23%)

602.5 0.3403 H-3(A)->L+1(A) (10%), H-2(A)->L(A) (24%),
H-1(B)->L+1(B) (31%) H-5(A)->L(A) (5%),
H-1(A)->L(A) (8%)

592.3 0.2526 H-2(A)->L+1(A) (40%), H-1(B)->L+2(B)

(46%)

Table S6. Selected TD-DFT (RB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 1*, H=HOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm) Osc. Strength (f) Major contributions

1860.2 0.074 H-1->L (64%), H->L (38%)

1502.2 0.3899 H-1->L (35%), H->L (69%)

775.2 0.102 H-3->L (53%), H-1->L+1 (26%), H->L+1
(13%)

730.0 0.0861 H-8->L (11%), H->L+2 (75%)  H-13->L
(3%)

645.1 0.521 H-11->L (21%), H-1->L+1 (46%), H->L+1
(14%)

632.7 0.1142 H-10->L (79%), H-1->L+2 (17%)

615.2 0.191 H-10->L (16%), H-1->L+2 (74%)
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Table S7. Selected TD-DFT (UB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 1. H=FHOMO, L=LUMO, L+1=LUMO+1, etc.

Major contributions

Wavelength (nm)  Osc. Strength (f)
4953.4 0.0953

1476.8 0.0143

867.4 0.16

739.3 0.106

612.6 0.1993

509.8 0.0536

H (A)->L (A) (102%)

H-1(A)->L (A) (56%), H-1(B)->L (B) (14%), H
(B)->L+1(B)

H-1(A)->L (A) (37%), H (B)->L+1(B) (56%),
H-2(B)->L (B)

H (A)->L+1(A) (80%) H-3(A)->L (A) (7%),
H-2(A)->L (A) (2%), H-2(B)->L+1(B) (5%), H-
1(B)->L+1(B) (2%)

H-3(A)->L (A) (26%), H-2(B)->L+1(B) (57%),
H-6(A)->L (A) (2%), H-3(B)->L (B) (7%), H
(B)->L (B) (2%)

H (A)->L+5(A) (88%) H-5(A)->L (A) (3%),
H (A)->L+8(A) (2%)

Table S8. Selected TD-DFT (RB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 1. H=HOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm) Osc. Strength (f)

Major contributions

2827.4 0.177

1045.0 0.1834
683.7 0.4718
663.3 0.1112
5343 0.1834
432.1 0.7097

H->L (130%)
H-1->L (98%)
H->L+1 (92%)
H-3->L (96%),
H->L+7 (86%),
(8%)
H-1->L+1 (46%), H->L+12 (43%),  H-
5->L (3%)

H-2->L (6%), H->L (2%)
H-2->L (2%)
H-4>L (2%), H->L+6
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Figure S10. TD DFT simulated spectra of 2 (a), 2'* (b), 22" (c) 2™ (d), and 2* (e).

Table S9. Selected TD-DFT (RB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 2. H=HOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm) Osc. Strength (f) Major contributions

867.5 0.0277 H-1->L+1 (13%), H->L (83%)

834.5 0.0597 H-1->L (21%), H->L+1 (72%)

609.7 0.2323 H-2->L (84%), H-4->L (2%), H-3->L+1 (6%)
544.6 0.2469 H-3->L+1 (87%), H-2->L (3%), H-1->L (3%)
445.0 0.1939 H-5->L (72%), H-4->L+1 (16%) H-7->L+1 (4%)
402.9 0.315 H-7->L (19%), H->L+2 (65%)  H-6->L+1 (9%)
385.4 0.412 H-7->L (35%), H-6->L+1 (25%), H->L+2 (24%)

Table S10. Selected TD-DFT (UB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 2. HFHOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm)  Osc. Strength (f) Major contributions

3157.2 0.1314 H(B)->L(B) (97%)

1456.7 0.057 H-1(A)->L+1(A) (19%), H(A)->L(A) (50%),
H(B)->L+2(B) (25%)

1038.4 0.0525 H-3(B)->L(B) (86%) H-1(A)->L+1(A)
(2%), H(A)->L(A) (4%), H-2(B)->L+1(B)
(2%), H-1(B)->L+2(B) (3%)

749.1 0.0971 H-1(A)->L+1(A) (62%), H(A)->L(A) (11%)

661.1 0.1298 H-9(B)->L(B) (24%), H-5(B)->L(B) (46%) H-
3(A)->L(A) (4%), H-2(A)->L+1(A) (4%), H-
7(B)->L(B) (3%), H-2(B)->L+1(B) (9%), H-
1(B)->L+2(B) (4%)

629.2 0.1559 H-2(A)->L(A) (16%), H-2(B)->L+2(B) (14%),

H-1(B)->L+1(B) (44%), H-3(A)->L+1(A)
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(%), H-10(B)->L(B) (9%), H-8(B)->L(B)
(2%), H-3(B)->L+1(B) (6%)

Table S11. Selected TD-DFT (RB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 22*. H=HOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm) Osc. Strength (f) Major contributions

1989.7 0.1437 H-1->L (28%), H->L (78%)

857.2 0.1643 H->L+2 (84%), H-3->L (8%), H->L (2%)

684.1 0.1261 H-2->L+1 (83%) H-1->L+2 (9%), H->L
(2%)

679.3 0.3302 H-4->L (11%), H-2->L+2 (10%), H-1->L+1
(55%)

672.6 0.1057 H-2->L+1 (11%), H-1->L+2 (85%)

633.8 0.1019 H-9->L (90%), H-12->L (2%)

601.7 0.0251 H-13->L (54%), H-12->L (44%)

Table S12. Selected TD-DFT (UB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 2. H=FHOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm)  Osc. Strength (f) Major contributions

5530.0 0.073 H (A)->L (A) (101%)

1666.2 0.0093 H-1(A)->L (A) (56%), H-1(B)->L (B) (16%), H
(B)->L+1(B) (29%)

999.6 0.0892 H-1(A)->L (A) (42%), H-1(B)->L (B) (12%), H
(B)->L+1(B) (41%),  H-3(B)->L+1(B)
(2%), H-2(B)->L (B) (3%)

782.7 0.031 2.907-A H-4(A)->L (A) (43%), H-2(B)->L (B)
(18%), H-1(B)->L (B) (17%) H-1(A)->L  (A)
(2%), H-3(B)->L+1(B) (8%), H (B)->L+1(B)
(6%)

709.2 0.2098 H (A)->L+1(A) (88%) H-1(B)->L+1(B) (4%)

589.3 0.1197 H-4(A)->L (A) (22%), H-4(B)->L (B) (13%), H-

3(B)->L+1(B) (53%), H-6(A)->L (A) (2%), H-
2(A)->L+2(A) (2%), H-1(A)->L+1(A) (2%)

Table S13. Selected TD-DFT (RB3LYP/6-31G(d,p)) calculated energies, oscillator strength and
compositions of major electronic transitions of 2. H=FHOMO, L=LUMO, L+1=LUMO+1, etc.

Wavelength (nm) Osc. Strength (f)

Major contributions

2853.4
1216.8
965.1
659.3
657.0
548.6

0.1374
0.0911
0.108
0.331
0.132
0.2517

H->L (120%), H-2->L (2%)
H-1->L (98%)

H-2->L (94%),  H->L (3%)

H->L+1 (94%), H-5->L (2%)

H-4->L (95%)

H-5->L (83%) H-3->L (3%), H->L+7 (5%)
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514.5 0.1901 H-6->L (34%), H->L+8 (13%), H->L+10
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Figure S11. Energy diagrams of 1 and 2 (eV); and molecular orbitals (RB3LYP/6-31G(d,p)) of a)
LUMO and b) HOMO of 1, and ¢) LUMO and d) HOMO of 2.

yo="751%

Figure S12. Calculated spin-density distribution (UCAM-B3LYP/6-31G(d)) of the singlet ground
states of 12* and 2%*, and their calculated diradical character (yo). Blue and green surfaces represent
a and B spin density, respectively.
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Yo=84.7% Yo = 80.2%

Figure S13. Calculated spin-density distribution (UCAM-B3LYP/6-31G(d)) of the singlet ground
states of 1> and 2%, and their calculated diradical character (yo). Blue and green surfaces represent
a and B spin density, respectively.
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Figure S14. Calculated electrostatic potential maps for the compound 1 and its charged species.
Red regions represent more negative charges, and blue regions represent more positive charges.
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Figure S15. Calculated electrostatic potential maps for the compound 2 and its charged species.
Red regions represent more negative charges, and blue regions represent more positive charges.
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Figure S16. Mulliken charge distribution of 1 and its charged species.
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Figure S17. Mulliken charge distribution of 2 and its charged species.

4. Crystallographic data of 1 and 2
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Figure S18. Molecular packing structures of 1 (a) and 2 (b).
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Figure S21. ORTEP drawing of (a) 1 and (b) 2. The thermal ellipsoids are scaled to 50%
probabilities.
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Table S14. Crystal data and structure refinement for 1.

Identification code j027b_a sq

Empirical formula Co66Ha14Cl72013

Formula weight 11256.35

Temperature/K 100(2)

Crystal system monoclinic

Space group C2/c

a/A 80.084(7)

b/A 16.1201(13)

c/A 54.564(4)

a/° 90

/e 129.561(4)

v/° 90

Volume/A? 54306(8)

Z 4

Pealeg/cm’ 1377

w/mm’! 3.793

F(000) 23112.0

Crystal size/mm’ 0.030 x 0.050 x 0.060 mm
Radiation CuKa (A =1.54178)

20 range for data collection/° 4.2 t0 133.19

Index ranges -95<h<90,-19<k<19,-61 <1<64
Reflections collected 423546

Independent reflections 47876 [Rint = 0.1198, Rgigma = 0.0565]
Data/restraints/parameters 47876/2128/2575
Goodness-of-fit on F? 1.121

Final R indexes [[>=2c ()] R1=0.1989, wR2 = 0.4306
Largest diff. peak/hole / e A-3 2.92/-1.10

The low quality of the crystallographic data of compound 1 does not allow reliable bond length
analysis, but the backbone of m-molecule was clearly seen.

The asymmetric unit contains 4.5 molecules of the compound C74H46sC130, and many weak
solvent peaks. In the first molecule, two butyl groups and a Cl,CsH3 group were disordered into
two positions with occupancy ratio = 66:34, 69:31 and 77:23 respectively. In the second molecule,
two butyl groups, one dichlorophenyl (CloCsH3) group and one Cl,Ci2Hs group (including one
dichlorophenyl group together with its adjacent C¢Hs unit in the molecular backbone) were
disordered into two positions with occupancy ratio = 75:25, 66:34, 76:24 and 79:21 respectively.
In the third molecule, two CloCsH3 groups and one Cl,Ci2Hs group (including one dichlorophenyl
group together with its adjacent C¢H3 unit in the molecular backbone) were disordered into two
positions with occupancy ratio = 54:46, 58:42 and 77:23 respectively. In the fourth molecule, one
butyl group and two Cl,C¢H3 groups were disordered into two positions with occupancy ratio =
71:29, 77:23 and 51:49 respectively. In the fifth residue (0.5 molecule), one Clo,CsH3 group was
disordered into two positions with occupancy ratio = 60:40. All disordered atoms were modelled

from the residual peaks. Restraints in bond lengths and thermal parameters were applied to the
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disordered atoms. Most C and O atoms were refined isotropically. The diffused and weak solvent
peaks in the lattice could not be modelled satisfactorily. Hence the regions were squeezed using
Platon program. The total electron count in the voids was 204.

Alert level A PROBLEM: Isotropic non-H Atoms in Main Residue(s) ....... 300 Report
RESPONSE: As there are four and a half molecules in the asymmetric unit and many of them
are disordered, hence some of the O and C are kept isotropic to keep the refinement data-to-
parameter-ratio higher.

Alert level B PROBLEM: High RI Value ..............cccccceeeueenn... 0.20 Report

RESPONSE: The high Rl Value could be due to the crystal is a large macromolecule helical
compound. The helical conformation and rigidity of the fused polyaromatic rings caused the
crystal difficult to packed well. The unit cell was very large with four and half molecules in the
asymmetric units. The crystal was not packed well so the data quality was poor. The reflection
intensities were low. I/sigma = 3.3. As the crystal was not packed well, many segments of the
molecules were disordered into two positions or even more.

Alert level B PROBLEM: High wR2 Value (i.e. > 0.25) ................... 0.45 Report

RESPONSE: The high wR2 Value could be due the crystal is a large macromolecule helical
compound. The helical conformation and rigidity of the fused polyaromatic rings caused the
crystal difficult to packed well. The unit cell was very large with four and half molecules in the
asymmetric units. The crystal was not packed well so the data quality was poor. The reflection
intensities were low. I/sigma = 3.3. As the crystal was not packed well, many segments of the
molecules were disordered into two positions or even more.

Alert level B PROBLEM: Large Reported Max. (Positive) Residual Density 2.92 eA-3
RESPONSE: This could be due to there were further disorder issues.

Alert level B PROBLEM: Low Bond Precision on C-C Bonds ............... 0.01757 Ang.
RESPONSE: The Low Bond Precision on C-C Bonds could be due the crystal is a large
macromolecule helical compound. The helical conformation and rigidity of the fused
polyaromatic rings caused the crystal difficult to packed well. The unit cell was very large with
four and half molecules in the asymmetric units. The crystal was not packed well so the data
quality was poor. The reflection intensities were low. I/sigma = 3.3. As the crystal was not packed
well, many segments of the molecules were disordered into two positions or even more.

Alert level B PROBLEM: Check Calcd Resid. Dens. 1.504Ang From CI6A_3 2.86 eA-3
RESPONSE: This could be due to there were further disorder issues.

Table S15. Crystal data and structure refinement for 2.

Identification code JQ004 Om a
Empirical formula Cs2H;50ClgOn
Formula weight 1350.82
Temperature/K 99.98

Crystal system monoclinic
Space group P2i/n

a/A 12.8626(6)
b/A 40.918(2)
c/A 29.4548(15)
a/° 90
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pre

v/°

Volume/A*

Z

Pealeg/cm’

wmm!

F(000)

Crystal size/mm’

Radiation

20 range for data collection/°
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F?

Final R indexes [[>=2c (I)]
Final R indexes [all data]
Largest diff. peak/hole / e A~

101.243(3)

90

15205.0(13)

8

1.180

3.048

5552.0

0.843 x 0.608 x 0.309

CuKa (A = 1.54184)

7.168 to 160.208
-14<h<16,-52<k<51,-37<1<37
502851

32390 [Rin = 0.1111, Ryjgma = 0.0389]
32390/33/1686

1.036

R, =0.1036, wR, = 0.2427

R, = 0.1126, wR, = 0.2494
1.28/-1.18
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5. NMR and HR MS spectra
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Figure S22. 'H NMR (500 MHz) spectra of 6 recorded in CDCl; at room temperature.

69
NNNW
SLL

o'zl
Gzl
921
1821
0'0gt
0'lELT
LLEL

6¢cel
8'eel
8'eel
o6l

9vrl

9'L6lL—

ovel—

g/cl

@NNFV
,8cL”
00€L~
0lelL~
LLEL~
6CeL\
8'€eel

w.mm_.v.

06elL—

oOvrl—

125

130

135

140

145

(ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

-10

10 0

(ppm)

Figure S23. 1*C NMR (125 MHz) spectra of 6 recorded in CDCl; at room temperature.
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Figure S24. 'H NMR (500 MHz) spectra of 7 recorded in CDCl; at room temperature.
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Figure S25. 1*C NMR (125 MHz) spectra of 7 recorded in CDCl; at room temperature.
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Figure S36. 'H NMR (500 MHz) spectra of 14 recorded in CD,Cl, at room temperature.
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Figure S38. 'H NMR (500 MHz) spectra of 1 recorded in THF-ds at room temperature.
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Figure S39. 'H NMR (500 MHz) spectra of 2 recorded in THF-ds at room temperature.
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Figure S40. High-resolution (HR) mass spectrum (APCI) of compound 1.
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Figure S41. HR mass spectrum (APCI) of compound 2.
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