Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting information

Multicolor tunable Bi³⁺,Sm³⁺ co-doped Sr₂GdGaO₅ phosphors and its

application in optical thermometry

Kangrui Qiang ^a, Yingqiang Yu ^a, Yulong Ye ^a, Liang Liang ^a, Qinan Mao ^a, Yang Ding ^a,

Yiwen Zhu^a, Meijiao Liu^b, Jiasong Zhong^{a,*}

^a Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou

Dianzi University, Hangzhou 310018, China

^b Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

Corresponding author:

E-mail: jiasongzhong@hdu.edu.cn (J.S. Zhong)

Fig. S1 (a-f) Rietveld refinement patterns of Sr₂GdGa_{1-z}Al_zO₅(z=0,0.2,0.4,0.6,0.8,1) phosphors.

Fig. S2 EDS spectrum of SGGAO phosphor.

Fig. S3 The PL and PLE spectra of (a) SGGO:Bi³⁺ and (b)SGGAO:Bi³⁺ phosphors.

Fig. S4 The CIE chromaticity coordinate diagrams of SGGAO: $0.01Bi^{3+}(0 \le z \le 1)$ samples.

Fig. S5 Dependence I_{s0}/I_s of Bi^{3+} on $C^{6/3}$, $C^{8/3}$ and $C^{10/3}$: (a) SGGO: Bi^{3+} and (b)SGGAO: Bi^{3+} .

Fig. S6 (a,b) The FIR fitting curve of SGGO: $0.01Bi^{3+}$, $0.03Sm^{3+}$ phosphor and its corresponding S_r , S_a values. (c,d) The FIR fitting curve of SGGAO: $0.01Bi^{3+}$, $0.03Sm^{3+}$ phosphor as well as its related S_r , S_a values.

Fig. S7 (a-f) The temperature-dependent PL spectra of SGGAO:0.01Bi³⁺,ySm³⁺ (y=0.005, 0.01, 0.02, 0.03, 0.04, 0.05) phosphors.

Fig. S8 The XRD patterns of phosphors before and after five cycles.

Fig. S9 (a-f) The FIR fitting curve of SGGAO:0.01Bi³⁺,ySm³⁺ (y=0.005, 0.01, 0.02, 0.03, 0.04, 0.05) phosphors.

SGG _{1-z} A _z O	a[Å]	b[Å]	c[Å]	v[Å ³]	R _P [%]	R _{WP} [%]	χ^2
z=0	6.7747	6.7747	11.1830	513.2633	5.92	13.17	2.22
z=0.2	6.7605	6.7605	11.1346	508.9027	6.44	2.24	1.90
z=0.4	6.7552	6.7552	11.0840	505.7900	6.18	10.44	1.69
z=0.6	6.7451	6.7451	11.0321	501.9231	5.99	9.99	1.67
z=0.8	6.7406	6.7406	10.9877	499.2371	6.11	9.83	1.61
z=1.0	6.7398	6.7398	10.9331	496.6352	5.63	8.77	1.58

 Table S1 The Rietveld refinement results of SGGAO phosphors.

Compounds	Temperature range(K)	S _r (max)(% K ⁻¹)	Ref.
YNbO ₄ : Bi ³⁺ ,Sm ³⁺	303-463	1.57	[1]
LaNbO ₄ : Bi ³⁺ ,Sm ³⁺	303-483	1.36	[2]
BaGd ₂ O ₄ : Bi ³⁺ ,Sm ³⁺	293-473	1.11	[3]
Sr ₃ La ₂ Ge ₃ O ₁₂ : Bi ³⁺ ,E	293-573	0.83	[4]
SrLu ₂ O ₄ : Bi ³⁺ ,Eu ³⁺	315-453	0.87	[5]
Sr ₂ YNbO ₆ :Bi ³⁺ ,Eu ³⁺	313-573	0.89	[6]
Sr ₂ GdGaO ₅ : Bi ³⁺ ,Sm	³⁺ 303-503	1.02	This work
Sr ₂ GdGa _{0.4} Al _{0.6} O ₅ : B	i ³⁺ ,Sm ³⁺ 303-563	1.22	This work

Table S2 The comparison of maximum S_r among different materials with Bi³⁺, RE³⁺ co-doped.

Reference

[1] X. Tiana, H. Doua, L. Wub, Non-contact thermometry with dual-activator luminescence of Bi³⁺/Sm³⁺: YNbO₄ phosphor, *Ceram. Int.*, 2020, **46**, 10641-10646.

[2] J. Xue, Z. Yu, H. M. Noh, B. R. Lee, B. C. Choi, S. H. Park, J. H. Jeong, P. Du, M. Song, Designing multi-mode optical thermometers via the thermochromic LaNbO₄:Bi³⁺/Ln³⁺ (Ln = Eu, Tb, Dy, Sm) phosphors, *Chem. Eng. J.*, 2021, **415**, 128977

[3] J. Fu, L. Zhou, Y. Chen, J. Lin, R. Ye, D. Deng, L. Chen, S. Xu. Dual-mode optical thermometry based on Bi³⁺/Sm³⁺ co-activated BaGd₂O₄ phosphor with tunable sensitivity, *J. Alloys Compd.*, 2022, **897**, 163034.

[4] Y. Shen, Y. Chen, L. Chen, D. Deng, S. Xu, Dual emitting from Bi^{3+}/Eu^{3+} co-activated $Sr_3La_2Ge_3O_{12}$ phosphor for optical thermometry, *Opt. Mater.*, 2021, **115**, 111036.

[5] X. Chen, Z. Zheng, L. Teng, R. Wei, F. Hu, H. Guo, Self-calibrated optical thermometer based on luminescence from SrLu₂O₄:Bi³⁺,Eu³⁺ phosphors, *RSC Adv.*, 2018, **8**, 35422-35428.

[6] S. Xu, J. Lei, L. Li, J. Chen, L. Chen, H. Guo, Dual-mode optical thermometry of Sr₂YNbO₆:Bi³⁺,Eu³⁺ phosphors designed by response surface methodology, *J. Lumin.*, 2023, 255, 119615.