Supporting Information

One-step green synthesis of Cu₂O/CuO@rGO composites for

ppt level detection of NO₂ at room temperature

Jinjuan Li,^{a#} Jing Hu,^{*a,b#} Nan Li,^a Miao Cheng,^a Tao Wei,^a Qianqian Liu,^a Ruirui Wang,^a Wanfei Li,^a Yun Ling,^{a,c} Yafei Zhang^d and Bo Liu^{*a}

- a. Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China.
- b. State Key Laboratories of Transducer Technology, Shanghai 200050, PR China.
- c. School of electronic & information engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China.
- d. Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.

* Corresponding author, Tel:+86-0512-68416733; Fax: +86-0512-68416733; Email: hujlina@usts.edu.cn; chengmiao@usts.edu.cn; liubo@mail.usts.edu.cn.

Fig. S1 Schematic diagram of dynamic gas sensitivity test system.

Fig. S2 FE-SEM images of (a) 550Cu₂O/CuO-5; (b) 150Cu₂O/CuO@rGO-5; (c) 300Cu₂O/CuO@rGO-5; (d) 450Cu₂O/CuO@rGO-5; (e) 550Cu₂O/CuO@rGO-5 and (f) 650Cu₂O/CuO@rGO-5.

Fig. S3. EDX analysis of the 550Cu₂O/CuO@rGO-5.

Fig. S4. (a) XRD and (b) Raman spectra of $Cu_2O/CuO@rGO-5$ composites with different Cu_2O additions.

Fig. S5. Electrochemical impedance spectroscopy (Nyquist diagram) of pure Cu_2O and $550Cu_2O/CuO-5$ materials.

Fig. S6. Dynamic response-recovery curve of (a-e) Cu₂O/CuO@rGO-5 sensors with different Cu₂O additions and (f) $550Cu_2O/CuO$ sensor to 5 ppm NO₂ at RT; (g) response/recovery time of Cu₂O/CuO@rGO-5 sensors with different Cu₂O additions and $550Cu_2O/CuO$ sensor with different reaction time to 5 ppm NO₂ at RT; (h) response and response/recovery rate of Cu₂O/CuO@rGO-5 sensors with different Cu₂O additions and $550Cu_2O/CuO$ sensor with different reaction time to 5 ppm NO₂ at RT; (h) response and response/recovery rate of Cu₂O/CuO@rGO-5 sensors with different Cu₂O additions and $550Cu_2O/CuO$ sensor with different reaction time to 5 ppm NO₂ at RT; (h) response and response/recovery rate of Cu₂O/CuO@rGO-5 sensors with different Cu₂O additions and $550Cu_2O/CuO$ sensor with different reaction time to 5 ppm NO₂ at RT.

Fig. S7. The stability evaluation of the as-prepared $550Cu_2O/CuO@rGO-5$ sensor within one month.

The evolution mechanism of the Cu₂O/CuO materials

The chemical equation of CuO obtained from Cu₂O is shown in Eq. 1-2. The excess OH^- in the solution together with O_2 etch the surface of Cu₂O and form $[Cu(OH)_4]^{2-}$ (Eq. 1). However, because $[Cu(OH)_4]^{2-}$ is unstable, it will decompose into CuO and H₂O (Eq. 2). At the same time, it self-assembles around the Cu₂O to form urchin-like Cu₂O/CuO spheres. Similarly, we have added the relevant description in the revised version.

$$Cu_2O + 1/2O_2 + 2H_2O + 4OH^- \rightarrow 2[Cu(OH)4]^{2-}$$
 (1)

$$[Cu(OH)_4]^{2-} \rightarrow CuO + 2OH^- + H_2O$$
⁽²⁾

LOD

The sensor noise can be calculated by the change of the relative response of the sensor in the baseline. Ten consecutive data collected before exposure to NO_2 gas were averaged, and the standard deviation (S) calculated using the root mean square deviation (RMSD)¹ formula was 0.00022.

$$RMS_{noise} = \sqrt{\frac{S^2}{N}} \#(3)$$

where N is the number of data points. The RMS_{noise} is calculated according to the above Eq. 3 to be 0.000156. According to the definition of detection limit (three times the standard deviation of noise). The slope is 0.00227 from Fig. 8d, so that

$$LOD = 3 \times \frac{RMS_{noise}}{slope} = 0.0906 \text{ ppb} = 90.6 \text{ ppt}\#(4)$$

Sample at different Cu ₂ O addition amount (mg)	GO	150	300	450	550	650
I _{Cu2O (111)} /I _{CuO (111)}		1:0.518	1:0.293	1:0.231	1:0.233	1:0.211
I_D/I_G	1.28	1.16	0.99	0.99	0.98	0.92

Table S1. The peak intensity ratio between Cu_2O and CuO and between D band and G band in $Cu_2O/CuO@rGO-5$ composites varies with the amount of Cu_2O added.

Material	Synthesis method/ temperature	Work Temperature	Response	$ au_{ m res}/ au_{ m rec}$	LOD
Cu ₂ O-CuO ²	One -step/180 °C	187 °C	10.2 (1 ppm)	35/47*	_
CuO-Co ₃ O ₄ ³	Multi-step/450 °C	160 °C	37.86% (10 ppm)	158/738*	_
CuO/ZnO ⁴	Multi-step/400 °C	RT (30 °C)	337% (5 ppm)	18/32	155 ppb
BiVO ₄ /Cu ₂ O/rGO ⁵	Multi-step/180 °C	60 °C	8.1 (1 ppm)	51.3/87.5*	100 ppb
Cu ₂ O/rGO ⁶	Multi-step/200 °C	RT	67.80% (2 ppm)	~440/490	82 ppb
CuO/rGO ⁷	Multi-step/80 °C	RT (23 °C)	400.80% (5 ppm)	6.8/55.1*	50 ppb
CuO/rGO ⁸	One-step/25 °C	RT	74395.2 (50 ppm)	30/270	100 ppb
CuO/rGO ⁹	One-step/180 °C	RT	30% (50 ppm)	Irreversible	150 ppb
rGO/Cu ₂ O ¹⁰	Multi-step/100 °C	RT	5.2 (1 ppm)	29.2/76.8	32 ppb
550Cu2O/CuO@rGO-5 This work	One-step/25 °C	RT (25 °C)	871 (5 ppm)	35/73	90.6 ppt

Table S2. NO₂ response of Cu_xO-based and rGO-based sensors in different work and the gas sensor in this work.

* Representing that τ_{res}/τ_{rec} is defined in the literature as 90% of the change in resistance value.

Reference

- V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff and S. K. Manohar, *Angew. Chem. Int. Ed. Engl.*, 2010, 49, 2154-2157.
- N. Wang, W. Tao, X. Q. Gong, L. P. Zhao, T. S. Wang, L. J. Zhao, F. M. Liu, X. M. Liu, P. Sun and G. Y. Lu, *Sens. Actuators, B*, 2022, 362, 131803.
- H. R. Fang, S. Li, H. M. Zhao, J. Deng, D. Wang and J. Li, Sens. Actuators, B, 2022, 352, 131068.
- 4. A. Govind, P. Bharathi, M. K. Mohan, J. Archana, S. Harish and M. Navaneethan, *J. Environ. Chem. Eng.*, 2023, **11**, 110056.
- Q. Q. Li, N. Han, K. W. Zhang, S. L. Bai, J. Guo, R. X. Luo, D. Q. Li and A. F. Chen, Sens. Actuators, B, 2020, 320, 128284.
- S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei and C. H. Sow, *J. Am. Chem. Soc.*, 2012, **134**, 4905-4917.
- H. N. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, Z. L. Xie, F. Q. Guo, D. J. Chen, R. Zhang and Y. D. Zheng, *Sens. Actuators, B*, 2021, 337, 129783.
- J. Hu, M. Cheng, T. Wei, Q. Q. Liu, W. F. Li, Y. Ling, Y. F. Zhang and B. Liu, Mater. Sci. Semicond. Process., 2022, 138, 106289.
- Z. Bo, X. Wei, X. Z. Guo, H. C. Yang, S. Mao, J. H. Yan and K. F. Cen, *Chem. Phys. Lett.*, 2020, **750**, 137485.
- J. L. Pan, W. Q. Li, L. Quan, N. Han, S. L. Bai, R. X. Luo, Y. J. Feng, D. Q. Li and A. F. Chen, *Ind. Eng. Chem. Res.*, 2018, 57, 10086-10094.